摘要
运用次微分convexificator提出约束规格并研究具有不等式和集合约束的局部Lipschitz多目标优化问题KT乘子集的非空有界性,得到了在局部弱有效解处所提出的约束规格是KT乘子集非空有界的充分必要条件.
Using the idea of convexificators, we proposed constraint qualifications and studied the existence and boundedness of the Kuhn-Tucker multipliers for a nonsmooth muhiobjective optimization problem with inequality constraints and an arbitrary set constraint. We showed that in locally weak efficient solutions where the objective and constraint functions are locally Lipschitz, the constraint qualifications are necessary and sufficient conditions for the Kuhn-Tucker multiplier Sets to be nonempty and bounded.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第4期740-741,共2页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:J0630104)