期刊文献+

非光滑多目标优化问题中KT乘子集的非空有界性

Nonemptiness and Boundedness of Set of Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization
下载PDF
导出
摘要 运用次微分convexificator提出约束规格并研究具有不等式和集合约束的局部Lipschitz多目标优化问题KT乘子集的非空有界性,得到了在局部弱有效解处所提出的约束规格是KT乘子集非空有界的充分必要条件. Using the idea of convexificators, we proposed constraint qualifications and studied the existence and boundedness of the Kuhn-Tucker multipliers for a nonsmooth muhiobjective optimization problem with inequality constraints and an arbitrary set constraint. We showed that in locally weak efficient solutions where the objective and constraint functions are locally Lipschitz, the constraint qualifications are necessary and sufficient conditions for the Kuhn-Tucker multiplier Sets to be nonempty and bounded.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第4期740-741,共2页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104)
关键词 次微分convexificator 约束规格 KT乘子集的非空有界性 非光滑多目标优化 convexificators constraint qualifications existence and boundedness of Kuhn-Tucker multipliers nonsmooth multiobjective optimization
  • 相关文献

参考文献3

  • 1X. F. Li,J. Z. Zhang. Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization[J] 2006,Journal of Optimization Theory and Applications(3):429~452
  • 2V. Jeyakumar,D. T. Luc. Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators[J] 1999,Journal of Optimization Theory and Applications(3):599~621
  • 3A. Jourani. Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems[J] 1994,Journal of Optimization Theory and Applications(3):533~548

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部