摘要
针对城市交通信号控制及公交优先问题,提出了一种交叉口自适应可变相序的多相位控制算法,利用多层BP神经网络实现了公交优先的交通信号多层模糊控制。仿真结果表明,与定时公交优先控制模型相比,模糊神经网络控制器能有效地减少公交车辆延误,具有较强的学习和泛化能力,可用于未来的信号控制系统中。
According to the intersection bus-priority traffic signal control, a multi-phase adaptive control algorithm based on variable phase sequence is given. Multi-layer BP neutral network is used to realize the bus-priority traffic signal multi-phase fuzzy control. Results of simulation research show that the bus-priority fuzzy is better than the fixed-time traffic signal control model by reducing the average bus delay, and show good abilities of learning and generation.
出处
《现代交通技术》
2009年第3期82-84,98,共4页
Modern Transportation Technology
关键词
交通控制
模糊控制
神经网络
公交优先
traffic control
fuzzy control
neutral network
bus-priority