期刊文献+

鼻腔计算机流体力学模拟及与鼻声反射和鼻阻力计相关研究 被引量:9

Relationship between computational fluid dynamics simulation and acoustic rhinometry and rhinomanometry in nasal cavity
下载PDF
导出
摘要 目的建立计算机流体力学(CFD)模型模拟平静呼吸状态下正常鼻腔形态和鼻腔内部流动,与鼻声反射和鼻阻力计测量进行对照分析。方法对志愿者鼻腔行CT扫描,通过Simplant10.0建立完整的鼻气道三维模型,利用Gambit2.3.16网格划分后,用Fluent6.3.2模拟不同流量下的鼻腔内部流体力学。将经CFD模型提取和计算的鼻腔冠状位截面积和鼻腔压降数据与鼻声反射和鼻阻力计的测量结果进行比较。结果CFD模型鼻腔冠状位面积与鼻声反射测量数据,在距前鼻孔30mm内两者的拟合度高,在距前鼻孔50mm外则后者大于前者。CFD模型计算各流量下鼻腔压降变化与鼻阻力计测量得到的压力-流量分布曲线的变化趋势一致,但压降值前者小于后者。结论CFD模型能精确反映鼻腔形态,准确计算鼻腔内部的流场数据。与以往测量手段相比较,CFD模型能更加直观且详细地表现鼻腔内部流体力学。 Objective To reconstruct a computational fluid dynamics (CFD) model of human nasal cavity, and make comparison analysis with acoustic rhinometry and rhinomanometry. Methods One healthy volunteer was performed CT scanning of nasal cavity, three dimensional CFD model was established by Simplant 10.0 and Gambit 2.3.16, and Fluent 6.3.2 was employed to simulate the airflow of nasal cavity. Acoustic rhinometer was used to assess the area of nasal cavity, rhinomanometry was adopted to measure the airflow and intranasal pressure drop during inspiration, and the results were compared with those obtained from CFD model. Results Cross section area of nasal cavity obtained from CFD model matches well with that measured by acoustic rhinometer within 30 mm distance from nostril, while the latter was larger than the former beyond 50 mm distance from nostril. The trend of intranasal pressure drop at different airflows measured by CFD model was the same as that measured by rhinomanometry, while the transnasal pressure obtained by CFD model was lower than that recorded by rhinomanometry. Conclusion CFD model can accurately simulate the shape of nasal cavity and measure the parameters of intranasal airflow, which helps to understand the airflow characteristics of nasal cavity.
出处 《上海交通大学学报(医学版)》 CAS CSCD 北大核心 2009年第7期845-849,共5页 Journal of Shanghai Jiao tong University:Medical Science
关键词 计算机流体力学 三维重建 鼻腔 鼻声反射 鼻阻力 computational fluid dynamics three-dimensional reconstruction nasal cavity acoustic rhinometry rhinomanometry
  • 相关文献

参考文献13

  • 1Proetz AW. Air currents in the upper respiratory tract and their clinical importance[J]. Ann Otol Rhinol Laryngol, 1951, 60(2) : 439 - 467.
  • 2Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity[ J]. J Appl Physiol, 1993, 75(5) : 2273 -2287.
  • 3Keyhani K, Scherer P, Mozell M. Numerical simulation of airflow in the human nasal cavity[J]. J Biomech Eng, 1995, 117(4): 429 - 441.
  • 4Subramaniam R, Richardson R, Morgan K, et al. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx[J]. Inhal Toxicol, 1998, 10( 1 ) : 91 - 120.
  • 5Kelly JT, Prasad AK, Wexler AS. Detailed flow patterns in the nasal cavity[J]. J Appl Physiol, 2000, 89( 1 ) : 323 -337.
  • 6Clement PA. Committee report on standardization of rhinomanometry ~J]. Rhinology, 1984, 22(3): 151-155.
  • 7Min YG,Jang YJ. Measurements of cross-sectional area of the nasal cavity by acoustic rhinometry and CT scanning[ J]. Laryngoscope, 1995, 105(7 Pt 1): 757 -759.
  • 8Xu C, Brennick M, Wootton D. Image-based three-dimensional finite element modeling approach for upper airway mechanics [ J ]. Conf Proc IEEE Eng Med Biol Soc, 2005, 3 : 2587 - 2590.
  • 9Garcia GJ, Bailie N, Martins DA, et al. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity [ J ]. J Appl Physiol, 2007, 103(3): 1082-1092.
  • 10Wexler D, Segal R, Kimbell J. Aerodynamic effects of inferior turbinate reduction[J]. Arch Otolaryngol Head Neck Surgy,2005, 131(12): 1102 -1107.

同被引文献80

  • 1刘迎曦,于申,孙秀珍,苏英锋,张军.鼻腔结构形态对鼻腔气流的影响[J].中华耳鼻咽喉头颈外科杂志,2005,40(11):846-849. 被引量:71
  • 2杨莉,高颖昌,赵志刚.鼻腔给药的研究进展[J].中国药学杂志,2006,41(22):1685-1688. 被引量:32
  • 3王吉喆,张军,孙秀珍,刘迎曦.鼻腔流场数值模拟与鼻声反射相关性研究[J].医学与哲学(B),2007,28(5):52-54. 被引量:1
  • 4曹春婷,张罗,韩德民.成年人鼻声反射测量的面积-距离曲线分析[J].中国耳鼻咽喉头颈外科,2007,14(6):371-374. 被引量:12
  • 5于勇.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
  • 6中华医学会耳鼻咽喉科学分会.中华耳鼻咽喉科杂志编委会,阻塞性睡眠呼吸暂停低通气综合征诊断依据和疗效评定标准(杭州).中华耳鼻咽喉科杂志,2002,:37-404,403.
  • 7Croce C, Fodil R, Durand M, et al. Invitro experiments and nu- merical simulations of airflow in realistic nasal airway geometry [J]. Ann Biomed Eng, 2006, 34: 997-1007.
  • 8Vos W, De Backer J, Devolder A, et al. Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging [J]. J Biomech, 2007, 40: 2207-2213.
  • 9Wustenberg EG, Zahnert T. Documentation ofendonasal changes in blood volume using optical rhinometry. HNO, 2006, 54(2) : 99-104.
  • 10Wustenberg EG, Hiittenbrink KB, Hauswald B, et al. Optical Rhinometry. Continuous, direct measurement of swelling of the nasal mucosa with allergen provocation. Real-time monitoring of the nasal provocation test using optical rhinometry. HNO, 2004, 52 (9) :798-806.

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部