期刊文献+

基于独立成分分析和随机森林判别法的Microarray分析及在分子生物学中的应用 被引量:1

Microarray analysis method based on independent component analysis and random forests discriminant
原文传递
导出
摘要 提出基于独立成分分析(ICA)和随机森林判别的Microarray分析方法。该方法先采用独立成分分析获取高阶统计信息,提取Microarray数据特征,达到降维的目的。再应用提取的特征,采用随机森林判别法对样本进行分类。数值分析结果表明,提取5个特征就可以使袋外样本OOB(out of bag)的分类错误率达到7.89%。该方法有效地降低了特征空间维数,具有较高的正确识别率,提高了算法的鲁棒性和灵活性。 In this paper, a microarray analysis method based on independent component analysis and random forests discriminant is provided. In this method the independent component analysis is used to obtain high order statistic information and extract features of microarray in order to reduce the dimension of the feature space. These features extracted were used to classify the samples of out - of -bag (OOB) by random forests discriminant. Numerical simulation shows that the classification error rates of OOB can be up to 7. 89% only by extracted five features. The method can reduce the dimension of feature space effectively and has higher correct classification rate. The results show that it improves robustness and flexibility of algorithms.
出处 《中国优生与遗传杂志》 2009年第8期8-10,共3页 Chinese Journal of Birth Health & Heredity
基金 北京市教育委员会科技发展计划面上项目(KM200910025006)
关键词 独立成分务析 随机森林 MICROARRAY Independent component analysis Random forests Microarray
  • 相关文献

参考文献2

二级参考文献14

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2M Dash,Liu H.Feature selection for classification[J].Intelligent Data Analysis,1997,(3):131-156.
  • 3R Kohavi,G H John.Wrappers for feature subset selection[J].Artificial Intelligence,97.1997(1 ~2):273 -324.
  • 4J Kennedy,R C Eberhart.Particle swarm optimization[A].Proc IEEE Conference on Neural Networks[C].Piscataway,NJ,1995 (4).1942-1948.
  • 5Y Shi,R C Eberhart.A modified particle swarm optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,1998.69-73.
  • 6R C Eberhart,J Kennedy.A discrete binary version of the particle swarm algorithm[A].IEEE Conference on Systems,Man,and Cybernetics[C].Orlando,FL,IEEE Press,1997 (5).4104-4109.
  • 7Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2 (2):121-167.
  • 8O Barzilay,V L Brailovsky.On domain knowledge and feature selection using a support vector machines[J].Pattern Recognition Letters.1999,20 (5):475-484.
  • 9L J Cao,F E Tay.Feature selection for support vector machines in financial time series forecasting[A].Intelligent Data Engineering and Automated Learning:Data Mining,Financial Engineering,and Intelligent Agents,Second International Conference Proceedings[C].Springer-Verlag,2000.
  • 10C L Blake,C J Merz.UCI repository of machine learning database[EB/OL].http://www.ics.uci.edu/_ ml-earn.1995-11-4.

共引文献28

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部