期刊文献+

布尔函数的代数厚度 被引量:2

Algebraic Thickness of Boolean Functions
下载PDF
导出
摘要 基于布尔函数的代数次数和代数厚度,给出了布尔函数和其分解函数的代数厚度的关系,利用递归和反证法导出了n元布尔函数代数厚度的上界是2**(n-1),这个上界回答了"是否存在代数厚度大于2**(n-1)的n元布尔函数"这个公开问题.在此基础上改进了n元k(2≤k≤(n-1)/2)次基本对称布尔函数的代数厚度的上界,同时也得到了布尔函数的代数厚度的一些性质. Based on the algebraic degree and the algebraic thickness of Boolean functions, the relationship of algebraic thickness between a Boolean function and their decomposing Boolean functions is given, and the upper bound on the algebraic thickness of Boolean functions with n variables is 2 * * ( n - 1) by the recurrence method and the reduction to absurdity. The upper bound answers the open problem: "whether there exists a Boolean function with n variables whose algebraic thickness is strictly greater than 2 * * ( n - 1)". At the end of this paper, according to this fact an upper bound on algebraic thickness of elementary symmetric Boolean functions of n variables with algebraic degree k ( 2 ≤ k ≤ ( n - 1 )/2) is improved, and some properties on algebraic thickness of Boolean functions are derived.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1412-1415,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60773003 60503010 60603010) 中国科学院研究生院信息安全国家重点实验室开放课题(No.03-06) 陕西省自然科学基金(No.2006F19) 陕西省自然科学基础计划基金(No.SJ08-ZT14)
关键词 布尔函数 代数正规型 代数厚度 基本对称布尔函数 Boolean functions algebraic normal form algebraic thickness elementary symmetric Boolean functions
  • 相关文献

参考文献9

  • 1L R Knudsen.Truncated and higher order differentials[A].Fast Software encryption,Second International Workshop[C].Lecture Notes in Computer Science,Springer-Verlag,vol.1008,1995.196-211.
  • 2X Lai.Higher order derivatives and differential cryptanalysis[A].Proc.Symposium on Communication,Coding and Cryptography[C].In honor of J L Massey on the occasion of his 60'th birthday,1994.
  • 3A Menezes.P van Oorschot.S Vanstone.Handbook of Applied Cryptography[M].Boca Taton,FL:CRC Press on Discrete Mathematics and Its Applications,1996.
  • 4C Carlet.On cryptographic complexity of Boolean functions[A].in Proc.6th Conf Finite Fields with Applications to Coding Theory,Cryptography and Related Areas[C].G L Mullen,H Stichtenoth,H Tapis-Recillas,Eds.Springer,2002.53-69.
  • 5C Carlet.On the algebraic thickness and nonnormality of Boolean functions[A].in Proc.2003 IEEE Information Theory Workshop[C].Paris,France,2003.147-150.
  • 6C Carlet.On the degree,nonlinearity,algebraic thickness and nonnormality of Boolean functions,with developments on symmetric functions[J].IEEE Transactions on Information Theory,2004,50(9):2178-2185.
  • 7J Maiorana.A classification of the cosets of the Reed-Muller code R(1,6)[J].Mathematics of Computation,1991,57:403-414.
  • 8王隽,李世取.Bent函数的一般构造法[J].高校应用数学学报(A辑),1999,14A(4):473-479. 被引量:6
  • 9张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54. 被引量:16

二级参考文献17

  • 1李世取 曾本胜.多值逻辑函数相关免疫的充要条件.密码学进展China-Crypt'94[M].北京:科学出版社,1994.257-264.
  • 2曾本胜 李世取 等.一类布尔函数Walsh谱的分解式及其应用.密码学进展-Chinacrypt'98[M].北京:科学出版社,1998.257-264.
  • 3曾本胜,密码学进展.CHINACRYPT’98,1998年,257页
  • 4Chee Seongtaek,Advances in Cryptology Asiacrypt 94,1995年,107页
  • 5李世取,密码学进展.CHINACRYPT’98,1994年,257页
  • 6Seberry J,Advances in Cryptology Crypt 93,1994年,49页
  • 7丁存生,密码学及其应用,1994年,25-27,136-142,163-169页
  • 8杨义先,编码密码学,1992年,203页
  • 9丁存生,The Stability Theory of Stream Ciphers,1991年
  • 10Nicolas T Courtois,Wili Meier.Algebraic attacks on stream ciphers with linear feedback[A].Advances in Cryptology-EUROCRYPT 2003[C].LNCS 2656,Berlin:Springer-Verlag,2003.346-359.

共引文献20

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部