摘要
基于布尔函数的代数次数和代数厚度,给出了布尔函数和其分解函数的代数厚度的关系,利用递归和反证法导出了n元布尔函数代数厚度的上界是2**(n-1),这个上界回答了"是否存在代数厚度大于2**(n-1)的n元布尔函数"这个公开问题.在此基础上改进了n元k(2≤k≤(n-1)/2)次基本对称布尔函数的代数厚度的上界,同时也得到了布尔函数的代数厚度的一些性质.
Based on the algebraic degree and the algebraic thickness of Boolean functions, the relationship of algebraic thickness between a Boolean function and their decomposing Boolean functions is given, and the upper bound on the algebraic thickness of Boolean functions with n variables is 2 * * ( n - 1) by the recurrence method and the reduction to absurdity. The upper bound answers the open problem: "whether there exists a Boolean function with n variables whose algebraic thickness is strictly greater than 2 * * ( n - 1)". At the end of this paper, according to this fact an upper bound on algebraic thickness of elementary symmetric Boolean functions of n variables with algebraic degree k ( 2 ≤ k ≤ ( n - 1 )/2) is improved, and some properties on algebraic thickness of Boolean functions are derived.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2009年第7期1412-1415,共4页
Acta Electronica Sinica
基金
国家自然科学基金(No.60773003
60503010
60603010)
中国科学院研究生院信息安全国家重点实验室开放课题(No.03-06)
陕西省自然科学基金(No.2006F19)
陕西省自然科学基础计划基金(No.SJ08-ZT14)
关键词
布尔函数
代数正规型
代数厚度
基本对称布尔函数
Boolean functions
algebraic normal form
algebraic thickness
elementary symmetric Boolean functions