期刊文献+

基于HMM核超球面支持向量机的超宽带SAR未爆物检测

Ultra-Wideband Synthetic Aperture Radar Unexploded Ordnance Detection Using HMM Kernel Hypersphere Support Vector Machine
下载PDF
导出
摘要 利用机载超宽带合成孔径雷达(UWB SAR)探测地下未爆物(UXO)具有安全和高效的优点.UXO检测分为预筛选和鉴别.预筛选从大面积SAR图像中提取若干怀疑目标,而鉴别则将这些怀疑目标分成UXO和杂波从而降低虚警.本文提出隐马尔可夫模型(HMM)核的超球面支持向量机(HS-SVM)UXO鉴别器.HS-SVM基于结构风险最小原理并利用核特征空间中的超球面区分UXO和杂波能够解决小训练样本集和无典型杂波样本两个问题.此外将描述UXO多方位特征的HMM作为HS-SVM核函数进一步提高了UXO的鉴别性能.实测数据处理结果表明,HMM核HS-SVM优于HMM和高斯核HS-SVM等UXO鉴别器. Using air-home Ultra-WideBand Synthetic Aperture Radar (UWB SAR) to detection underground unexploded ordnance (UXO) has the advantages of safety and efficiency. UXO detection is composed of prescreening and discrimination. Prescreening is to extract several suspected targets from SAR imagery of wide areas and discrimination is to classify these suspected targets into UXO and clutter to reduce false alarms. In this paper, the Hidden Markov Model (HMM) kernel HyperSphere Support Vector Machine (HS-SVM) UXO discdminator is proposed. HMM kernel HS-SVM employs the structural risk minimization theory and uses hypersphere in kernel feature space to classify UXO and clutter, which can solve the two problems of a small training set and without typical clutter samples. In addition,the HMM, which describes the UXO multi-aspect feature,is used as the kernel function of HS-SVM can improve the UXO discrimination performance further. The field data processing discrimination results show that HMM kernel HS-SVM outperforms the HMM and the Gaussian kernel HS-SVM in UXO discrimination.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1509-1515,共7页 Acta Electronica Sinica
基金 教育部新世纪优秀人才支持计划(No.NCET-07-0223)
关键词 超宽带 合成孔径雷达 隐马尔可夫模型核 超球面支持向量机 未爆物 ultra-wideband synthetic aperture radar (SAR) hidden Markov model (HMM) kemel hypersphere support vector machine unexploded ordnance
  • 相关文献

参考文献21

  • 1Morikawa M,Taylor S,Persons M.Deaths and injuries due to unexploded ordnance (UXO) in northern Lao PDR (Laos)[J].Injury,1998,29(4):301-304.
  • 2Marr B,Torrione P,Miller J,et al.Parameterized likelihood ratio method for EMI unexploded ordnance detection[A].In Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets IX[C].Orlando,FL:SPIE,2004.843-854.
  • 3Zhang Y,Collins L,Carin L.Physics model based unexploded ordnance discrimination using wideband EMI data[A].In Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets Ⅷ[C].Orlando,FL:SPIE,2003.1023-1034.
  • 4Andrews A,Ralston J,Tuley M.Research on ground-penetrating radar for detection of mines and unexploded ordnance:current status and research strategy[R].Alexandria,VA:IDA,1999.
  • 5Carin L,Geng N,McClure M,et al.Wide-area detection of land mines and unexploded ordnance[J].Inverse Problems,2002,18(3):575-609.
  • 6Dong Y,Runkle P R,Carin L,et al.Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1259-1270.
  • 7Novak L M,Halversen S D,Owirka G J,et al.Effects of polarization and resolution on SAR ATR[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):102-116.
  • 8Tax D.One-class classification:concept-learning in the absence of counter-examples[D].Deflt Netherlands:Deflt University of Technology,2001.
  • 9Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 10Krishnapuram B,Sichina J,Carin L.Physics-based detection of targets in SAR imagery using support vector machines[J].IEEE Sensors Journal,2003,3(2):147-157.

二级参考文献19

  • 1金添,周智敏,常文革.折射对地表穿透合成孔径雷达成像影响定量分析[J].电子对抗,2005(5):16-21. 被引量:1
  • 2DudaRO 李宏东 姚天翔译.模式分类[M].北京:机械工业出版社,2003..
  • 3Jin T, Zhou Z, Chang W. Modified wavefront reconstructionimaging formation for stand-off GPEN SAR. Electronics Letters,2005, 41(10): 63-64.
  • 4McCorkle JW, Focusing of synthetic aperture ultra wideband data. In.. Proceeding of International Geoscience and Remote Sensing Symposium. Fairhorn, OH, USA, 1991. PiscatawayIEEEPress, 1991, 1-5.
  • 5Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques. IEEE Trans on Aerospace and Electronic Systems, 1990, 27(2): 194-207.
  • 6Ulander LMH, Hellsten H, Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE trans on Aerospace and Electronic Systems, 2003, 39 (3) : 760-776.
  • 7Rau R, McClellan J. Analytic models and postprocessing techniques for UWB SAR, IEEE Trans on Aerospace and Electronic Systems, 2000, 36(4):1085-1074.
  • 8Krishnapuram B, Sichina J, Carin L. Physics-based detection of targets in SAR imagery using support vector machines, IEEE Sensors Journal, 2003, 3(2):147-157.
  • 9Andrew R.Webb著,王萍,杨培龙,罗颖昕译.统计模式识别(第二版).北京:电子工业出版社,2004,245—247.
  • 10Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998,2(2):599-574.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部