期刊文献+

遮挡检测/立体匹配中的分段动态规划法 被引量:2

Dynamic Programming in Segments for Occlusion Detection/Stereo Matching
下载PDF
导出
摘要 为了显式地在视差图上标记出遮挡区域,本文在计算视差空间的基础上,利用动态规划算法搜索出最佳视差曲线.计算所得的视差曲线上有三种状态标记:匹配状态和二种遮挡状态.为了保证视差曲线通过路径控制点,提出了一种分段式动态规划算法.算法将视差空间影像划分为路径控制区和非路径控制区.在路径控制区强制路径通过路径控制点,在非路径控制区采用动态规划进行路径最佳搜索.为保证路径控制点高度可靠,提出了选择路径控制点的4个准则.实验结果表明,新算法比传统的动态规划算法在遮挡检测和匹配精度上都有一定的提高,算法可靠性强,运算量小. In order to mark occluded regions explicitly on the disparity map, the dynamic programming is employed to search optimal disparity curve on base of the calculating disparity space at first. Each point on the optimal disparity curve must be in one of three states:matching state or other two occlusion states. To guarantee the disparity curve passing through ground control points (GCP) ,an algorithm of dynamic programming in segments is proposed, that is,the disparity space image is divided into ground control regions and non-ground control regions. In the ground control region, the searching path is forced to pass GCPs. In the non- ground control region, the optimal path searching is under dynamic programming. For the reliability of the GCP, four criterions are presented to choose a point as a GCP. Experimental results show that the new algorithm has certain enhancement in the precision of occlusion detection and matching,and is more reliable and faster than conventional dynamic algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1516-1521,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60472083 No.60872141)
关键词 动态规划 遮挡检测 立体匹配 视差估计 dynamic programming occlusion detection stereo matching disparity estimation
  • 相关文献

参考文献18

  • 1U R Dhond,J K Aggarwal.Structure from stereo-A review[J].IEEE Transactions on Systems,Man,and Cybernetics,1989,19(6):1489-1510.
  • 2D Marr,T Poggio.Cooperative computation of stereo disparity[J].Science,1976,194(4262):283-287.
  • 3C L Zitnick,T Kanade.A cooperative algorithm for stereo matching and occlusion detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(7):675 -684.
  • 4P Belhumeur,D Mumford.A bayesian treatment of the stereo correspondence problem using half-occluded regions[A].IEEE Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'92)[C].Champaign,IL,USA,1992.506-512.
  • 5P Belhumeur.Bayesian models for reconstructing the scene geometry in a pair of stereo images[A].Proceedings of IEEE Conference on Information Sciences[C].Johns Hopkins University,1993.
  • 6P Belhumeur.A binocular stereo algorithm for reconstructing sloping,creased,and broken surfaces in the presence of halfocclusion[A].Proceedings of Fourth International Conference on Computer Vision[C].Berlin,Germany,1993.431 -438.
  • 7Aaron F Bobick,Stephen S Intille.Large occlusion stereo[J].International Journal of Computer Vision,1999,33(3):181 -200.
  • 8P Burt,B Julesz.A gradient limit for binocular fusion[J].Science,1980,208(9):615-617.
  • 9S Pollard,J Porrill,J Mayhew,J Frisby.Disparity gradient,lipschitz continuity,and computing binocular correspondence[A].O D Faugeras,G Giralt editors,Robotics Research:The Third International Symposium[C].Massachusetts:MIT Press,1986.19-26.
  • 10N Grammalidis,M G Strintzis.Disparity and occlusion estimation in multi-ocular systems and their coding for the communication of multi-view image sequencesl[J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8(3):328-344.

二级参考文献48

  • 1游素亚,柳健,徐光佑.利用视觉相位鉴别能力求解立体视觉匹配[J].电子学报,1996,24(10):72-75. 被引量:9
  • 2吴翊 李永乐 等.应用数理统计[M].长沙:国防科技大学出版社,1997.135-144.
  • 3Oppenheim A V,Lim J S.The importance of phase in signals[A].Proc.of the IEEE[C].Gong,1981,69(5):529-541.
  • 4Sanger T D.Stereo disparity computation using Gabor filters[J].Biological Cybernetics,1988,59:405-418.
  • 5Jenkin M R M,Jepson A D,Tsotsos J K.Techniques for disparity measurement[J].CVGIP:Image Understanding,1991,53(1):14-30.
  • 6Fleet D J,Jepson A D,Jenkin M R M.Phase-based disparity measurement[J].CVGIP:Image Understanding,1991,53(2):198-210.
  • 7Cai L D,Mayhew J.A Note on Some Phase Differencing Algorithms for Disparity Estimation[J].Int Journal of Computer Vision,1997,22(2):111-124.
  • 8Fleet D J.Disparity from Local Weighted Phase-Correlation[A].IEEE Int.Conf.on Systems.Man and Cybernetics[C].San Antonio,1994.48-56.
  • 9Zhou J,Xu Y,Yu W R.Phase Matching with Multiresolution Wavelet Transform[A].Proc.SPIE[C].San Jose,2002,4661:82-91.
  • 10Kuglin C D,Hines D C.The Phase Correlation Image Alignment Method[A].In Proc of IEEE Int Conf.on Cybernetics and Society[C].New York,1975.163-165.

共引文献37

同被引文献24

  • 1管业鹏,顾伟康.基于灰度相关复峰集立体匹配法[J].浙江大学学报(工学版),2005,39(4):522-525. 被引量:1
  • 2SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two_frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.
  • 3ZITNICK C L, KANG S B. Stereo for imagebased rendering using image oversegmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65.
  • 4KLAUS A, SORMANN A, KAMER K. Segmentbased Stereo matching using belief propagation and a selfadapting dissimilarity measure[C]∥IEEE International Conference on Pattern Recognition. Hong Kong:IEEE, 2006: 15-18.
  • 5BIRCHFIELD S, TOMASI C. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406.
  • 6VEKSLER O. Stereo correspondence by dynamic programming on a tree[C]∥IEEE International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005, 2: 384-390.
  • 7WANG L, LIAO M, GONG M, et al. Highquality realtime stereo using adaptive cost aggregation and dynamic programming[C]∥Proceedings of Third International Symposium on 3D Data Processing, Visualization, and Transmission. Chapel Hill: IEEE, 2006: 798-805.
  • 8KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts[C]∥IEEE International Conference on Computer Vision. Vancouver: IEEE, 2001: 508-515.
  • 9YANG Q, WANG L, AHUJA N. A constantspace belief propagation algorithm for stereo matching[C]∥IEEE International Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 298-305.
  • 10ZABIH R, WOODFILL J. Nonparametric local transforms for computing visual correspondence[C]∥IEEE International Conference on Computer Vision. Vancouver: IEEE, 1994: 151-158.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部