期刊文献+

基于“矩阵乘法”的网络最短路径算法 被引量:6

Shortest Path Problem Algorithm in Network Based on Matrix Multiplication
下载PDF
导出
摘要 网络最短路径问题可以作为许多实际应用问题的模型,但传统的求解算法其迭代过程复杂.本文描述了基于矩阵乘法的最短路算法,其时间复杂度与Dijkstra算法相同.在给定的一个网络图中,在不改变网络图中的最短路的条件下,删除"多余"的结点或边,可以达到简化网络图和提高求解速度的目的,从而降低计算复杂性.最后,研究了该方法在最短路径问题和旅行商问题中的应用.实例表明,这种算法与传统的动态规划技术相比,具有运算简便、易于理解的优点. Shortest Path Problem in network can be acted as a model for many application problems, but the iteration process of the conventional solution algeorithm is complex. In this paper, the shortest path algorithm based on the matrix multiplication in a weighted-graph are described,and its time complexity is as same as Dijkstra algorithm. In a given network graph, this algorithm delete spare nodes or edges and reach the goal that reduced network graph and improved speed of solving problem under the condition of unchanged shortest parth. Finally, we give examples,e.g. Traveling Salesman Problem, shortest path problem,to illistrate its advanteges, possessing merits of simple operation and easy understanding, compared with dynamic programming technology.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1594-1598,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60875034)
关键词 矩阵乘法 最短路问题 约简原则 旅行商问题 matrix mulfiplication shortest path problem reduced principle traveling salesman problems
  • 相关文献

参考文献10

二级参考文献48

  • 1王苏男,宋伟,姜文生.最短路径算法的比较[J].系统工程与电子技术,1994,16(5):43-49. 被引量:11
  • 2曹鲁寅,罗斌,钦明浩.用遗传算法求解最短路径问题[J].合肥工业大学学报(自然科学版),1996,19(3):112-116. 被引量:25
  • 3Pallotlino S. Shortest path methods: complexity, interrelation and new propositions[ J]. Networks, 1984,14:257 - 267.
  • 4Den N, Pang C Y. Shortest-path algorithms: taxonomy and annotation[ J]. Networks, 1984,14:275 - 323.
  • 5Gallo G, Pallottino S. Shortest paths algorithms [ J ]. Annals of Operations Research, 1988,13:3 - 79.
  • 6Cherkassky B V, Goldberg A V, Radzik T. Shortest paths algorithms: theory and experimental evaluation [ J ]. Mathematical Programming, 1996,73 : 129 - 174.
  • 7Zhan F B, Noon C E. Shortest path algorithms: an evaluation using real road networks[J]. Transportation Science, 1998, 32(1) :65 - 73.
  • 8Bertsekas D P. A simple and fast label correcting algorithm for shortest paths[ J]. Network, 1993,23:703 - 709.
  • 9Glover F, Glover R, Klingman D. Computational study of an improved shortest path algorithm[ J]. Networks, 1984,14:25 - 36.
  • 10Goldberg A V, Radzik T. A heuristic improvement of the Bellman-Ford algorithm [ J]. Applied Mathematics Letters, 1993, 6(3) :3-6.

共引文献29

同被引文献55

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部