期刊文献+

Cs(6D_J)+(H_2,H_e)的反应与非反应碰撞能量转移 被引量:3

Reactive and Nonreactive Energy Transfer in Cs(6D_J)+(H_2,H_e) Collisions
下载PDF
导出
摘要 在样品池条件下,利用原子荧光光谱方法,测量了Cs(6DJ)与H2,He碰撞中的反应与非反应能量转移截面。利用脉冲激光886nm线双光子激发Cs(6S)到Cs(6D3/2)态,原子荧光中除含有6D3/2→6P的直接荧光外,还含有6D5/2→6P的转移荧光。利用三能级模型的速率方程分析,在不同的He和H2密度下,分别测量直接荧光与转移荧光的时间积分荧光强度比,得到了6D3/2与H2和He碰撞的精细结构转移截面分别为σ=(55±13)×10-16和(16±4)×10-16cm2,同时确定了6D5/2与H2和He的碰撞猝灭速率系数。6D5/2态与H2的碰撞猝灭速率系数比6D5/2与He的大,它是反应与非反应速率系数之和,利用实验数据确定非反应速率系数为6.3×10-10cm3.s-1,得到6D5/2与H2的反应截面为(2.0±0.8)×10-16cm2。利用不同H2(或He)密度下6D5/2→6P3/2时间积分荧光强度,得到6D3/2与H2反应截面为(4.0±1.6)×10-16cm2,6D3/2与H2反应的活性大于6D5/2。 Cs vapor, mixed with a gas was irradiated in a glass fluorescence cell with pulses of 886nm radiation from a YAG-laser-pumped OPO laser, populating 6D3/2 state by two-photon absorption. Cross sections for 6D3/2→6D5/2 transition induced by collisions with various He atoms and Hz molecules were determined using methods of atomic fluorescence. The resulting fluorescence included a direct component emitted in the decay of the optically excited state and a sensitized component arising from the collisionally populated state. At the different densities, we have measured the relative time-integrated intensities of the components and fitted a three-state rate equation model to obtain the cross sections for 6D3/2→6D5/2 transfer: σ= (55±13) ×10^-16 and (16±4) ×10^-16 cm^2 for Hz and He, respectively. The cross sections for the effective quenching of the 6D5/2 state were also determined. The total transfer rate coefficients from the 6D5/2 state for He is small [1. 2 × 10^-10 cm^3.s^-1 ]. The total quenching rate coefficient of the 6D5/2 state is larger for H2[6. 7 × 10-^10 cm^3.s^-1]. For H2 case, the quenching rate coefficient corresponds to reaction and nonreactive energy transfer. Evidence suggests that the nonreactive energy transfer rate coefficient is [6. 3 ×10^-10 cm^3.s^-13. He nce the authors estimated the cross section (2. 0±0. 8)× 10^-16 cm^2 for reactive process Cs(6D5/2)+H2→CsH+H. Using the dependence on the pressure of H2 (or He )of the integrated fluorescence monitored at the 6D5/2→6P3/2 transition the cross section (4. 0±1.6) × 10^-16 cm^2 for Cs ( 6D3/2 ) + H2 →CsH + H was obtained. Thus, the relative reactivity with H2 follows an order of Cs(6D3/2)〉Cs(6D5/2).
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第8期2042-2045,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10664003)资助
关键词 激光光谱 碰撞能量转移 荧光 截面 Cs—H2 He Laser spectroscopy Collisional energy transfer Fluorescence Cross section Cs-H2, He
  • 相关文献

参考文献13

  • 1LinKC, HuangCT. J. Chem. Phys., 1989, 91: 5387.
  • 2Liu D K, Chin T I, Liu K C. Phys. Rev. , 1994, A50: 4849.
  • 3赵亿坤,崔秀花,白振岙,戴康,沈异凡.Rb(5D_J)+H_2→RbH+H反应截面的测定[J].光谱学与光谱分析,2009,29(5):1172-1175. 被引量:2
  • 4Kleiber P D, Wong T H, Biligu S. J. Chem. Phys. , 1993, 98: 1101.
  • 5Luo Y L, Lin K C, Liu D K, et al. Phys. Rev. , 1992, A46: 3834.
  • 6Cuvellier J, Petitjean L, Mestdagh J M, et al. J. Chem. Phys., 1986, 84: 1451.
  • 7Wong T H, Kleiber P D, Yang K H. J. Chem. Phys. , 1999, 110: 6743.
  • 8Bililigu S, Hattaway B C, Robinsow T L, et al. J. Chem. Phys., 2001, 114: 7052.
  • 9Fan L H, Chen J J, Lin Y Y, et al. J. Phys. Chem. , 1999, A103: 1300.
  • 10Tam A C, Ysbuzaui T, Curry S M, et al. Phys. Rev. , 1978, A17: 1862.

二级参考文献14

  • 1Liu D K,Lin K C.J.Chem.Phys.,1996,105(20):9121.
  • 2Bililign S,Kleiber PD.J.Chem.Phys.,1992,96(1):213.
  • 3Chen J J,Hung Y M,Liu D K,et al.J.Chem.Phys.,2001,114(21):9395.
  • 4L'Hermite J M,Rahmat G,Vetter R.J.Chem.Phys.,1991,95(5):3347.
  • 5Fan L H,Chen J J,Liu Y Y,et al.J.Phys.Chem.,1999,A103:1300.
  • 6Wong T H,Kleiber P D,Yanqg K H.J.Chem.Phys.,1999,110(14):6743.
  • 7Bililign S,Hattaway B C,Robinson T L,et al.J.Chem.Phys.,2001,114(16):7052.
  • 8Lou Y L,Lin K C,Liu D K,et al.Phys.Rev.,1992,A46(7):3834.
  • 9Bililign S,Hathaway B C,Geum N,et al.J.Phys.Chem.,2000,A104:9454.
  • 10Hattaway B C,Bililign S,Uhl L,et al.J.Chem.Phys.,2004,120(4):1739.

共引文献1

同被引文献20

  • 1Chang Y P, Hsiao M K, Liu D K, et al. J. Chem. Phys. , 2008, 128:234309.
  • 2Lin K C, Vetter R, Int. Rev. Phys. Chem., 2002, 21: 357.
  • 3Huang X, Zhao J Z, Xing G Q, et al. J. Chem. Phys. , 1996, 104(4):1338.
  • 4Mgers E G, Murnick D E, Softky W R. Appl. Phys. , 1987,1343: 247.
  • 5Fan L H, ChenJ J, Lin Y Y, et al. J. Phys. Chem. , 1999, A103: 1300.
  • 6Cavero V, L'Hermite J-M, Rahmat G, et al. J. Chem. Phys. , 1999, 110(07) : 3428.
  • 7Lin D K, Lin K C. J. Chem. Phys. , 1996, 105(20): 9121.
  • 8Chen J J, Huang Y M, Lin D K, et al. J Phys. Chem. , 2001, 114(21):9395.
  • 9L'Hermite J-M, Rahmat G, Vetter R. J. Chem. Phys. , 1991, 95(5): 3347.
  • 10Visticot J P, Ferray M, Loyingot J, et al. J. Chem. Phys., 1983, 79(6): 2839.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部