摘要
木材近红外光谱常常被一系列噪声所污染,影响光谱分析结果。为了提高近红外光谱分析精度,需要对光谱数据进行预处理。光谱导数可以消除光谱背景干扰和基线漂移等因素影响,提高光谱分辨率,但导数光谱在增强信号的同时,也使信号噪声得到增强。应用小波变换对杉木木材近红外一阶导数光谱进行去噪研究,分别采用9点平滑法、25点平滑法、非线性小波硬阈值和软阈值法、9点平滑+小波变换法和25点平滑+小波变换法对光谱数据进行去噪研究。结果显示,小波变换能够有效去除导数光谱中的噪声信号,保留光谱中的有效信息,提高光谱信噪比,提高光谱的分析能力,在木材近红外光谱分析中具有很好的应用前景。
Near infrared (NIR) spectra of wood samples are often confused by a series of noise, which greatly influences accurate analytical result. In order to improve analytical precision, the authors need to pretreat the spectrum data. Derivative can correct baseline and background effects, increasing the resolution ratio of the spectra. However, it also increases the noise at the same time. The present paper aims at using wavelet transform to eliminate the noise of the near infrared first derivative spectrum of wood with the methods of 9 point smoothing spectrum, 25 point smoothing spectrum, the nonlinear wavelet hard-threshold spectrum, the nonlinear wavelet soft-threshold spectrum, 9 point smoothing+wavelet transform and 25 point smoothing spectrum+ wavelet transform. The results show that the wavelet transform has particular advantage on noise elimination of the near infrared spectra while reserving the useful information of spectrum. It can also improve the signal to noise ratio of spectrum, promising the prospect of a wide application in the wood near infrared spectroscopic analysis.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2009年第8期2059-2062,共4页
Spectroscopy and Spectral Analysis
基金
中央级公益性科研院所专项基金项目(CAFINT2007C04)
国家自然科学基金重点项目(30730076)资助
关键词
近红外光谱
小波变换
去噪
Near infrared spectroscopy
Wavelet transform
Denoising