期刊文献+

Wavelet denoising via sparse representation 被引量:26

Wavelet denoising via sparse representation
原文传递
导出
摘要 Wavelet threshold denoising is a powerful method for suppressing noise in signals and images. However, this method often uses a coordinate-wise processing scheme, which ignores the structural properties in the wavelet coefficients. We propose a new wavelet denoising method using sparse representation which is a powerful mathematical tool recently developed. Instead of thresholding wavelet coefficients individually, we minimize the number of non-zero coefficients under certain conditions. The denoised signal is reconstructed by solving an optimization problem. It is shown that the solution to the optimization problem can be obtained uniquely and the estimates of the denoised wavelet coefficients are unbiased, i.e., the statistical means of the estimates are equal to the noise-free wavelet coefficients. It is also shown that at least a local optimal solution to the denoising problem can be found. Our experiments on test data indicate that this new denoising method is effective and efficient for a wide variety of signals including those with low signal-to-noise ratios.
出处 《Science in China(Series F)》 2009年第8期1371-1377,共7页 中国科学(F辑英文版)
基金 Supported by the U.S. National Institutes of Health (Grant No. U01 HL91736) the National High-Tech Research & Development Programof China (Grant No. 2007AA01Z175)
关键词 signal processing DENOISING sparse representation wavelet transform signal processing, denoising, sparse representation, wavelet transform
  • 相关文献

参考文献10

  • 1Boufounos P,,Duarte M,Baraniuk R.Sparse signal reconstruc tion from noisy compressive measurements using cross valida tion[].Proc IEEE Statistical Signal Processing Workshop (SSP).2007
  • 2Blumensath T,Davies M E.Iterative thresholding for sparse approximations[].Journal of Fourier Analysis and Applications.2008
  • 3Lange K,Hunter D R,Yang I.Optimization transfer using surrogate objective functions[].J Comput Graph Statist.2006
  • 4Xu Y,Weaver JB,Healy DM,et al.Wavelet transform domain filters: a spatially selective noise filtration technique[].IEEE Transactions on Image Processing.1994
  • 5Dohono DL.De-noising by soft-thresholding[].IEEE Transactions on Information Theory.1995
  • 6A.Pizurica,W.Philips,I.Lemahieu,et al.A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising[].IEEE Transactions on Image Processing.2002
  • 7Mallat,S.,Zhong,S.Characterization of signals from multi-scale edges[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1992
  • 8Kelly,SE.Gibbs phenomenon for wavelets[].Applied and Computational Harmonic Analysis.1996
  • 9Cai,T.,Silverman,B.W.Incorporating information on neighboring coefficients into wavelet estimation[].Sankhya.2001
  • 10G.Y.Chen,T.D.Bui,A.Krzyzak.Image Denoising Using Neighbouring Wavelet Coefficients[].ICASSP -- -/.2004

同被引文献221

  • 1李敏,冯象初.基于总变分和各向异性扩散方程的图像恢复模型[J].西安电子科技大学学报,2006,33(5):759-762. 被引量:10
  • 2Xie Shengli Tan Beihai Fu Yuli.Blind signal separation of underdetermined mixtures based on clustering algorithms on planes[J].Progress in Natural Science:Materials International,2007,17(6):670-674. 被引量:2
  • 3Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 4Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 5Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 6Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 7Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 8Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 9Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 10Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334

引证文献26

二级引证文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部