摘要
Wavelet threshold denoising is a powerful method for suppressing noise in signals and images. However, this method often uses a coordinate-wise processing scheme, which ignores the structural properties in the wavelet coefficients. We propose a new wavelet denoising method using sparse representation which is a powerful mathematical tool recently developed. Instead of thresholding wavelet coefficients individually, we minimize the number of non-zero coefficients under certain conditions. The denoised signal is reconstructed by solving an optimization problem. It is shown that the solution to the optimization problem can be obtained uniquely and the estimates of the denoised wavelet coefficients are unbiased, i.e., the statistical means of the estimates are equal to the noise-free wavelet coefficients. It is also shown that at least a local optimal solution to the denoising problem can be found. Our experiments on test data indicate that this new denoising method is effective and efficient for a wide variety of signals including those with low signal-to-noise ratios.
基金
Supported by the U.S. National Institutes of Health (Grant No. U01 HL91736)
the National High-Tech Research & Development Programof China (Grant No. 2007AA01Z175)