期刊文献+

基于元胞自动机改进的微粒群算法 被引量:1

An improved Particle swarm optimization based on Cellular automata
下载PDF
导出
摘要 该文在分析微粒群算法局部最好模型几种邻域结构特点的基础上,提出了基于元胞自动机改进的微粒群算法。该算法从元胞自动机的建模思想出发,指出了微粒群算法本身就是一个元胞自动机,从而利用元胞自动机的理论对微粒群算法进行分析改进。实验结果表明,该算法不仅在单峰函数和多峰函数的优化中表现出了较好的性能,而且还适合比较广泛范围函数的优化。 Based on the analysis of various population topologies' characteristic of the Lbest population on particle swarm optimization (PSO), this paper proposes an improved particle swarm optimization based on Cellular Automata. Associating the modeling idea of cellular automata, the algorithm points out that PSO algorithm itself is a cellular automaton, as a result, the algorithm uses theory of cellular automata to analyses improvement of PSO algorithm. Experimental simulations show that the presented algorithm not only shows a better performance in both unimodal functions and muhimodal functions, but also results in best performance on a range of functions.
作者 夏小翔
出处 《鄂州大学学报》 2009年第2期5-9,共5页 Journal of Ezhou University
关键词 微粒群算法 元胞自动机 邻域 局部最好模型 particle swarm optimization cellular automata population the Lbest population
  • 相关文献

参考文献1

二级参考文献2

共引文献133

同被引文献5

  • 1Chang C I,Wu Chao Cheng,Liu Wei min,et al.A New Growing Method for Simplex-Based Endmember Extraction Algorithm. IEEE Trans.Geosci.Remote Sens . 2006
  • 2Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Joint Conference on Neural Networks . 1995
  • 3Kennedy J,Eberhart R C.A Discrete Binary Version of the Particle Swarm Algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics . 1997
  • 4戴宏亮,戴道清.基于ETAFSVM的高光谱遥感图像自动波段选择和分类[J].计算机科学,2009,36(4):268-272. 被引量:8
  • 5章磊,段莉莉,钱紫鹃,黄光明.基于遗传算法的WSN节点定位技术[J].计算机工程,2010,36(10):85-87. 被引量:23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部