期刊文献+

界面追踪方法中的激波限制器研究 被引量:4

Shock Limiter in Front Tracking Method
下载PDF
导出
摘要 针对多介质流体界面追踪(Front Tracking)方法,通过在界面处构造Riemann问题,研究激波限制器应用过程中的若干基本问题.针对气-气和气-水界面问题,通过比较平均守恒误差、L1误差和激波强度随参数的变化情况,给出激波限制器参数可以在0.3附近选取.同时,通过理论分析和数值算例发现,当有激波接近界面时,选择激波波后状态作为界面处Riemann问题的初始状态,数值模拟结果较满意. Riemann problems are constructed at interface in front tracking(FT) method for multi-fluid flows to study application of shock limiter. In gas-gas and gas-water problems, shock limiter parameter is selected about 0.3 considering average conservation error, L1 error and strength of the shock. It is indicated that in order to obtain better solutions the back shock wave should be selected as an original state for Riemann problems at the interface as a shock is close to a material interface.
出处 《计算物理》 EI CSCD 北大核心 2009年第4期510-516,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10576015)资助项目
关键词 可压缩多介质流 界面追踪方法 RIEMANN问题 限制器 compressible multi-fluid flow front-tracking method Riemann problem limiter
  • 相关文献

参考文献1

二级参考文献2

共引文献6

同被引文献19

  • 1王晨星,唐维军,程军波.应用多介质PPM方法计算斜激波与物质交界面的相互作用[J].计算物理,2004,21(6):531-537. 被引量:4
  • 2张学莹,赵宁.基于体积分数形式的多介质流动数值模拟[J].南京航空航天大学学报,2005,37(4):436-441. 被引量:4
  • 3宫翔飞,张树道,江松.界面捕捉Level Set方法的(AMR)数值模拟[J].计算物理,2006,23(4):391-395. 被引量:12
  • 4Wang C W, Liu T G, Khoo B C. A real-ghost fluid method for the simulation of multi-medium compres- sible flow [J]. SIAM Journal on Scientific Compu- ting, 2006, 28(1): 278-302.
  • 5Fedkiw R P, Aslam T, Merriman B, et al. A non- oscillatory Eulerian approach to interfaces in multi- material flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999, 152(2) :457-492.
  • 6Terashima H, Tryggvason G. A front-tracking/ ghost-fluid method for fluid interfaces in compressi-ble flows[J]. Journal of Computational Physics, 2009, 228(2): 4012-4037.
  • 7Glimm J, Grove J, Li X, et al. Simple front tracking [J]. Contemporary Mathematics, 1999,238(2) : 133 149.
  • 8Glimm J, Li X L, Liu Y J, et al. Conservative front tracking and level set algorithms[J]. Proceedings of the National Academy of Sciences, 2001, 98 (25): 14198-14201.
  • 9Glaister P. An approximate linearised Riemann sol- ver for the Euler equation for real gases[J]. Journal of Computational Physics, 1988,74 (2) : 382-408.
  • 10Shyue K M. A fluid-mixture type algorithm for com- pressible multicomponent flow with Mie-Gruneisen e- quation of state[J]. Journal of Computational Phys- ics, 2001 ,171(2):678-707.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部