摘要
通过量子行为能增强粒子的全局寻优能力,引进了量子粒子群算法(QPSO),用于求解信赖域(TR)算法的子问题,并将这2种算法有效结合.数值实验表明,新算法具有良好的全局寻优能力,并有效提高收敛速度和避免早熟.
Through acts of quantum particles can enhance the ability of global optimization, introdueted a quantum particle swarm optimization ( QPSO ) for solving trust region ( TR ) algorithm for a subset of issues, and combined the two techniques. Then with the proper setting, the experimental results indicated that the new algorithm has good convergence and fast convergence rate.
出处
《高师理科学刊》
2009年第4期18-20,共3页
Journal of Science of Teachers'College and University
关键词
粒子群
量子粒子群
信赖域
particle swarm
quantum-behaved particle swarm optimization
optimization trust region