期刊文献+

改进的精化Cayley-Arnoldi算法计算电力系统关键特征值 被引量:6

Improvement of the Refined Cayley-Arnoldi Algorithm for Computing the Critical Eigenvalues of Power Systems
下载PDF
导出
摘要 在用于电力系统关键特征值计算的精化Cayley-Arnoldi算法中,采用精化Ritz对替代原来的Ritz对,从而形成改进型算法。由于精化Ritz向量包含更多的子空间信息,精化Ritz值更接近其最终收敛的Ritz值,改进后的算法更有利于迭代计算的收敛;精化Ritz对能够廉价可靠地求得,计算时间增加有限。算例分析表明,仅需1次Cayley变换即可把复平面特定区域内的特征值转换为主特征值,并能明显区分相近特征值,验证了所提出算法的计算速度和收敛特性。 In the refined Cayley-Arnoldi algorithm for computing critical eigenvalues of power system, the Ritz pairs are replaced by the corresponding refined Ritz pairs to form an improved algorithm. As more subspace information is contained in the refined Ritz vectors, the refined Ritz values are closer to the finally convergent Ritz values. As a result, the improved algorithm is of advantage to the convergence of the iterative computation. The Ritz pairs can be obtained cheaply and reliably with limited increase of computing time. To transfer the concerned eigenvalues within the special area on the complex plane to dominant eigenvalues, the Cayley transformation is only required once, and the adjacent eigenvalues can be obviously distinguished. The computing speed and convergence characteristic of the proposed approach are validated on three testing systems.
出处 《电力系统自动化》 EI CSCD 北大核心 2009年第15期13-17,83,共6页 Automation of Electric Power Systems
关键词 小干扰稳定性分析 精化Arnoldi算法 Cayley变换 精化Ritz对 small signal stability analysis refined Arnoldi algorithm Cayley transformation refined Ritz pairs
  • 相关文献

参考文献8

二级参考文献55

  • 1杜正春,刘伟,方万良,夏道止.基于JACOBI-DAVIDSON方法的小干扰稳定性分析中关键特征值计算[J].中国电机工程学报,2005,25(14):19-24. 被引量:15
  • 2方思立.提高PSS的投入率增强电力系统动态稳定[J].电网技术,1996,20(9):9-12. 被引量:3
  • 3H. A. van der Vorst, Computational Methods for Large Eigenvalue Problems, Elsevier-North Holland, 2002.
  • 4Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. A. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelpha, PA, 2000.
  • 5E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices, J. Comput. Phys., 17 (1975), 87-94.
  • 6Z. Jia, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems,SIAM J. Matrix Anal. Appl., 16 (1995), 843-862.
  • 7Z. Jia, Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblem, Linear Algebra Appl., 259 (1997), 1-23.
  • 8Z. Jia, Generalized block Lanczos methods for large unsymmetric eigenproblems, Numer. Math.,80 (1998), 239-266.
  • 9Z. Jia, A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems, Linear Algebra Appl., 270 (1998), 171-189.
  • 10Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287 (1999),191-214.

共引文献112

同被引文献75

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部