期刊文献+

用支持向量机检测乳腺X线影像中的结构扭曲 被引量:4

The Detection of Architectural Distortion in Mammograms by Using Support Vector Machine
下载PDF
导出
摘要 利用频域小波变换对乳腺X线影像中结构扭曲的图像进行小波分解,从得到的分解图像中计算了12个与纹理有关的特征参数.用支持向量机分类算法对样本集2组实验对象(乳腺结构扭曲、正常样本各19个)进行乳腺结构扭曲的识别分类;通过优化支持向量机参数条件,得到最好的分类结果.分类结果表明:本研究确定的12个纹理特征参数组合,用优化的支持向量机分类器检测和识别乳腺结构扭曲,分类正确率为92.1%、灵敏度89.5%和特异度94.7%. The discrete wavelet transform (DWT) was employed to describe the texture features of breast in mammograms. Twelve selected parameters of the DWT were calculated and analyzed to represent the architectural distortion. Based on a sampling dataset composed of 19 architectural distortions and 19 normal mammograms, a support vector machine (SVM) was employed as a classifier. The SVM with parameters was optimized and the best classification result was obtained. The results show that the combination of all these twelve parameters by SVM is effective to detect breast architectural distortion with an accuracy of 92.1%, a sensitivity of 89.5%, a specificity of 94.7%.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第7期1038-1042,共5页 Journal of Shanghai Jiaotong University
基金 上海交通大学医工(理)交叉研究基金资助项目(YG2007MS24)
关键词 乳腺 X线影像 结构扭曲 纹理特征 离散小波变换 支持向量机 breast X-ray image architectural distortion texture {eature discrete wavelet transform(DWT) support vector machine (SVM)
  • 相关文献

参考文献1

  • 1Rangaraj M. Rangayyan,Fábio J. Ayres. Gabor filters and phase portraits for the detection of architectural distortion in mammograms[J] 2006,Medical & Biological Engineering & Computing(10):883~894

同被引文献42

  • 1WHO Media Centre. WHO cancer fact sheets[EB/OL], http://www.who.int/mediacentre/factsheets/fs297/en/ index.html, February, 2012.
  • 2Tang J S, Rangayyan R M, Xu J, et al. Computer-aided detection and diagnosis of breast cancer with mammog- raphy: Recent advances[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(2): 236--251.
  • 3National Cancer Institute. NCI cancer fact sheets[EB/OL], http://www.cancer.gov/cancertopics/types/breast, 2012.
  • 4American College of Radiology. About BI-RADS[EB/OL]. http://www.birads.at/info.html, 2012.
  • 5Guo Q, Shao J, Ruiz V. Investigation of support vector machine for the detection of architectural distortion in mammographic images[J]. Journal of Physics: Conference Series, 2005, 15: 88-94.
  • 6Sampat M P, Whitman G J, Markey M K, et al. Evidence based detection of spiculated masses and architectural distortions[C]//Proceedings of the SPIE Medical Imaging: Image Processing, 2005, 5747: 26-37.
  • 7Rangayyan R M, Ayres F J. Gabor filters and phase portraits for the detection of architectural distortion in mammograms[J]. Medical and Biological Engineering and Computing, 2006, 44(10): 883-894.
  • 8Banik S, Rangayyan R M, Desautels J E. Detection of architectural distortion in prior mammograms[J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 279-294.
  • 9Ayres F J, Rangayyan R M. Reduction of false positives in the detection of architectural distortion in mammo- grams by using a geometrically constrained phase portrait model[J]. International Journal of Computer Assisted Radiology and Surgery, 2007, 1(6): 361-369.
  • 10Biswas S K, Mukherjee D P. Recognizing architectural distortion in rnammogram: A multiscale texture modeling approach with GMM[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(7): 2023-2030.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部