期刊文献+

基于肌电信号的人手姿态多模式识别方法 被引量:10

Study on Recognition of Multi-mode Hand Gestures Based on Myoelectric Signal
下载PDF
导出
摘要 为了实现多自由度假手的控制,需要基于人体肌电信号识别更多的手部姿态.采用6枚表面肌肤电极获取肌电信号,使用样本均值构成特征向量训练支撑向量机,通过对人手姿态模式进行合理规划,实现了人手19种姿态的有效分类.相比传统稳态特征集而言,新方法使用阈值特征集训练分类器,使其在总体及模式过渡特征的识别率上均有提高.基于此而构建的人手姿态多模式在线识别方法将使多自由假手的肌电控制更加直观与有效. The development of multi-DOF prosthetic hand appeals for classfying more hand gestures based on myoelectric signals extracted from the forearm. Six surface electromyography (EMG) electrodes were used to acquire myoelectric signals. Each channel's sample means are used to constitute feature veztors for training the support vector machines (SVM). Then 19 modes of hand gestures can be discriminated effectively. Comparing with some traditional training methods that use the steady-state features of myoelectric signals, the new method improves the predicting accuracy both on full scale features and the ones between the mode transitions. This will benefit the on-line recognition of the hand gestures, therefore make the multi-DOF prosthetic hand's EMG control more intuitive and effective.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第7期1071-1075,1080,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60675045)
关键词 肌电控制 模式识别 支撑向量机 假手 electromyography (EMG) control pattern recognition support vector machine prosthetic hand
  • 相关文献

同被引文献114

  • 1李荣冰,刘建业,曾庆化,华冰.基于MEMS技术的微型惯性导航系统的发展现状[J].中国惯性技术学报,2004,12(6):88-94. 被引量:91
  • 2尹少华,杨基海,梁政,陈香,任焱暄.基于递归量化分析的表面肌电特征提取和分类[J].中国科学技术大学学报,2006,36(5):550-555. 被引量:13
  • 3胡晓,李莉,任小梅,王志中.基于小波系数熵的表面肌电信号识别[J].中国医学物理学杂志,2007,24(3):212-214. 被引量:4
  • 4Yang J Z, Esteban P P, Karim A M, et al. A multifingered hand prosthesis[J].Mechanism and Machine Theory, 2004, 39(6): 555-581.
  • 5Zollo L, Roccella S, Tucci R, et al. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetics hand robotic applications[C]// Biorob 2006. Pisa: IEEE, 2006: 402-407.
  • 6Cipriani C, Controzzi M, Carrozza M C, et al. Progress towards the development of the smarthand transradial prosthesis[C]// 2009 IEEE 11th International Conference on Rehabilitation Robotics. Piscataway: 1EEE, 2009: 682-687.
  • 7Pons J L, Rocon E, Ceres R, et al. The MANUS- HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects[J]. Autonomous Robots, 2004, 16(2): 143-163.
  • 8Bitzer S, van der Smart P. I.earning EMG control of a robotic hand:towards active prostheses[C] // Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2 819-2 823.
  • 9Sangole A P, I.evin M F. Arches of the hand in reach to grasp[J]. Journal of Biomechanics. 2008, 41(4): 829- 837.
  • 10Tetsuya M, Haruhisa K, Keisuke Y. Anthropomor phic robot hand: Gifu hand III[C]//2002 Internation al Conference on Computer Applications in Shipbuild ing. Jeonbuk, Korea: Tribon Solution AB, 2002 1 288-1 293.

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部