摘要
针对膜蛋白分类预测问题,在氨基酸组分基础上引入氨基酸位置信息,计算多种氨基酸残基指数的相关系数并选择最优组合方式;融合2类特征信息对膜蛋白序列进行特征提取;采用支持向量机算法作为分类器,构建了一种新型膜蛋白分类模型,在自检验、Jackknife检验和独立测试集检验3种典型方式下,预测准确率分别为98.25%、88.10%和95.62%.结果表明,多特征融合能够有效提取膜蛋白序列的特征信息,与现有方法相比,该分类模型具有较高的分类预测成功率.
Membrane protein plays a crucial role in cells and makes the material basis for cells to implement various functions. In order to predict the type of membrane protein, which is a crucial fundamental research in the field of the structure and function of membrane protein, this paper introduced the position of amino acid and calculated multi-amino acid index correlation coefficients. Then it constructed a new type of membrane protein classification model that combines two feature classes and support vector machine (SVM). Under three typical methods (self-consistency, Jackknife and independent dataset), the accuracy rate of the prediction is 98.25%, 88. 10% and 95.62% respectively. The experimental results demonstrate the usefulness of the above method to extract the characteristic information and predict the type of membrane protein.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2009年第7期1172-1176,1179,共6页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(60773021
60603054)
关键词
膜蛋白
权重氨基酸组成
氨基酸指数
相关系数
支持向量机
membrane protein
weighted amino acid composition~ amino acid index
correlation coeffi-cient
support vector machine (SVM)