期刊文献+

多特征融合提取算法结合支持向量机预测膜蛋白类型 被引量:2

Prediction of Membrane Protein Types by Combining Features and Weighted-Support Vector Machine
下载PDF
导出
摘要 针对膜蛋白分类预测问题,在氨基酸组分基础上引入氨基酸位置信息,计算多种氨基酸残基指数的相关系数并选择最优组合方式;融合2类特征信息对膜蛋白序列进行特征提取;采用支持向量机算法作为分类器,构建了一种新型膜蛋白分类模型,在自检验、Jackknife检验和独立测试集检验3种典型方式下,预测准确率分别为98.25%、88.10%和95.62%.结果表明,多特征融合能够有效提取膜蛋白序列的特征信息,与现有方法相比,该分类模型具有较高的分类预测成功率. Membrane protein plays a crucial role in cells and makes the material basis for cells to implement various functions. In order to predict the type of membrane protein, which is a crucial fundamental research in the field of the structure and function of membrane protein, this paper introduced the position of amino acid and calculated multi-amino acid index correlation coefficients. Then it constructed a new type of membrane protein classification model that combines two feature classes and support vector machine (SVM). Under three typical methods (self-consistency, Jackknife and independent dataset), the accuracy rate of the prediction is 98.25%, 88. 10% and 95.62% respectively. The experimental results demonstrate the usefulness of the above method to extract the characteristic information and predict the type of membrane protein.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第7期1172-1176,1179,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60773021 60603054)
关键词 膜蛋白 权重氨基酸组成 氨基酸指数 相关系数 支持向量机 membrane protein weighted amino acid composition~ amino acid index correlation coeffi-cient support vector machine (SVM)
  • 相关文献

参考文献5

二级参考文献46

  • 1徐志节,杨杰,王猛.一种新的彩色图像降维方法[J].上海交通大学学报,2004,38(12):2063-2067. 被引量:10
  • 2Chou K C, Elrod D W. Prediction of membrane protein types and subcellular locations [J]. Proteins:Structure, Function, and Genetics, 1999, 34 (1):137-153.
  • 3Chou K C. Prediction of protein cellular attributes using pseudo-aminOacid composition[J]. Proteins:Structure, Function, and Genetics, 2001, 43 (3):246-255.
  • 4Chou K C, Elord D W. Protein subcellular location prediction[J]. Protein Eng, 1999,12(2):107-118.
  • 5Cai Y D, Liu X J, Chou K C. Artificial neural network model for predicting membrane protein types[J]. J Biomol Struct Dyn, 2001, 18(4): 607-610.
  • 6CaiYD, ZhouGP, Chou KC. Support vector machines for predicting membrane protein types by using functional domain composition [J]. Biophysical Journal, 2003, 84(5) :3257-3263.
  • 7Feng Z P, Zhang C T. Prediction of membrane protein types based on the hydrophobic index of aminOacids[J]. J Protein Chem, 2000, 19(4):269-275.
  • 8Yang X G, Feng Z P. Predicting membrane protein types using residue-pair models based on reduced similarity dataset[J]. J Biomol Struct Dyn, 2002, 20(2):163-172.
  • 9Sam T R, Lawrence K S. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000, 290(5500) :2323-2326.
  • 10Lawrence K S, Sam T R. An introduction tOlocally linear embedding [EB/OL]. http:∥www.cs.toronto.edu/~roweis/lle/,2001-06-10.

共引文献12

同被引文献34

  • 1徐志节,杨杰,王猛.利用非线性降维方法预测膜蛋白类型[J].上海交通大学学报,2005,39(2):279-283. 被引量:6
  • 2Wallin E, Von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms[J]. Protein Science, 1998,7 ( 4 ) : 1029-1038.
  • 3Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model:Application to complete ge- nomes[J]. Journal of Molecular Biology, 2001,305 (3) : 567-580.
  • 4Hopkins A L, Groom C R. The druggable genome[J]. Nature Reviews Drug Discovery, 2002,1 (9) :727-730.
  • 5Chou K C, Elrod D W. Prediction of membrane protein types and subcellular Locations[J]. Proteins, 1999,34( 1 ) : 137- 153.
  • 6Chou K C. Prediction of protein cellular attributes using pseudo-amino acid composition[J]. Proteins, 2001,43 (3) :246-255.
  • 7Cai Y D, Ricardo P W, Jen C H, et al. Application of SVM to predict membrane protein types[J]. Journal of Theoretical Biology, 2004,226 (4) : 373-376.
  • 8Stevens J P. Applied multivariate statistics for the social sciences[M]. 5ed. London, UK: Routledge, 2012:418-420.
  • 9Napierala K, Stefanowski J. BRACID : A comprehensive approach to learning rules from imbalanced data[J]. Journal of Intelligent Information Systems,2012,9(2) :335-373.
  • 10Waglay A A. Exploring the tension between the discources of affirmative action and the know|edge economy[D]. Stellenbosch, South Africa : Stel- lenbosch University, 2013 : 56-62.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部