期刊文献+

基于多领域仿真的SQP并行优化算法 被引量:8

SQP Parallel Optimization Algorithm Based on Multi-domain Simulation
下载PDF
导出
摘要 研究多领域仿真优化中SQP算法的并行处理与调度策略,提出了基于多领域仿真的SQP并行优化问题中的抽象调度模型即等式约束离散变量优化模型,对算法理论的可行性做了深入探讨;采用机群系统构建了并行仿真优化环境,在自主研发的多领域统一建模与仿真平台MWorks下实现了并行优化模块。以F14战机简易模型的控制参数优化为例,验证了该方法的有效性。 A parallel processing and scheduling strategy of SQP algorithm in multi-domain simulation optimization was studied. We proposed the abstract scheduling model in parallel optimization problem: an discrete variable optimization model with equality constraints. Details of cluster of workstations were given, a thorough theoretical feasibility of parallel algorithm. Under the uniform modeling and simulation platform for multi-domain systems, MWorks, parallel optimization and process were implemented. The efficiency of SQP optimization of parallel technique was proved by an example of the design optimization of a simple F14 aircraft model.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第15期1823-1829,共7页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(2006AA04Z121) 国家自然科学基金资助项目(50775084)
关键词 SQP 并行优化 多领域仿真 MODELICA SQP parallel optimization multi- domain simulation Modelica
  • 相关文献

参考文献6

二级参考文献40

共引文献155

同被引文献81

  • 1吴克恭,闫云聚,姜节胜.刚架与板组合结构动力学形状优化研究[J].机械科学与技术,2000,19(z1):63-65. 被引量:9
  • 2范文博.用户均衡条件下3类停车设施收费定价模型[J].重庆交通大学学报(自然科学版),2013,32(4):656-658. 被引量:9
  • 3潘振宽,丁洁玉,高磊,高波.多体系统动力学动态最优化设计与灵敏度分析[J].力学学报,2005,37(5):611-619. 被引量:6
  • 4陈忠.关于非线性规划问题的并行算法[J].长江大学学报(自科版)(上旬),2006,3(4):1-7. 被引量:1
  • 5KURDI M H, BERAN P S. Spectral element method in time for rapidly actuated systems[J]. Journal of Computational Physics, 2007, 227(3): 1 809-1 835.
  • 6QIAN W, ARORA J S. Altemative formulations for transient dynamic response optimization[J]. AIAA Journal, 2005, 43(10): 2 188-2 195.
  • 7CHOI D H, PARK H S, KIM M S. A direct treatment of min-max dynamic response optimization problems[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pt. 1 (A93- 33876 13-39): 508-516.
  • 8PARK S, KAPANIA R K, KIM S J. Nonlinear transient response and second-order sensitivity using time finite element method[J]. AIAA J, 1999, 37(5): 613-622.
  • 9PATERA A T. A spectral element method for fluid dynamics; laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54: 468-488.
  • 10KANG B S, PARK G J, ARORA J S. A review of optimization of structures subjected to transient loads[J]. Struct. Multidisc Optim., 2006, 31(2): 81-95.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部