期刊文献+

驱动主义学派下的一类新的遗传算法 被引量:1

New genetic algorithm based on drivenism school
下载PDF
导出
摘要 针对人工智能传统的三大学派的各自优缺点总结了驱动主义学派的人工智能思想。通过对遗传学中若干机理的分析及与经典意义上的遗传算法的对比,对传统的遗传算法进行了改进。引入了性别编码、同性竞争、交配评价和人工酶催化驱动技术。以求Rosenbrock函数的极大值为例,对修正后的遗传算法进行了实例分析。分析结果表明,该算法较好地拟合真实的遗传规律,更好地解决传统求解过程中容易陷入局部极值的情形,具有更高的求解效率。 Drivenism artificial intelligence is summarized based on advantages and disadvantages of three traditional academic circles in artificial intelligence. Through discussing genetic mechanism and comparing with traditional genetic algorithm, this paper proposed the improvement for traditional genetic algorithm. Corresponding technology plans including sex code, intro- duced same-sex competition, evaluation for mating and artificial enzymes catalytic driving. A problem for maximum value of Rosenbrock function was dealt with by the improved genetic algorithm as an example. The analysis result states that the algorithm can simulate true genetic rules and deal with the local value status in computing process better. The efficiency for dealing with optimal problem is higher.
作者 胡扬 桂卫华
出处 《计算机应用研究》 CSCD 北大核心 2009年第8期2861-2863,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60874008) 国家"973"计划资助项目(2002CB312200)
关键词 人工智能 驱动主义 遗传算法 人工代谢系统 Rosenbrock函数 artificial intelligence drivenism genetic algorithm artificial metabolic system Rosenbrock function
  • 相关文献

参考文献8

  • 1胡扬,桂卫华.基于人工代谢系统的物流管理(英文)[J].计算机工程与科学,2008,30(10):51-54. 被引量:3
  • 2刘徐迅,曹阳,陈晓伟.基于移动机器人路径规划的鼠群算法[J].控制与决策,2008,23(9):1060-1064. 被引量:15
  • 3许越.化学反应动力学[M]化学工业出版社,2005.
  • 4S. Dunn,S. Peucker,J. Perry. Genetic Algorithm Optimisation of Mathematical Models Using Distributed Computing[J] 2005,Applied Intelligence(1):21~32
  • 5Ceyda O?uz,M. Fikret Ercan. A Genetic Algorithm for Hybrid Flow-shop Scheduling with Multiprocessor Tasks[J] 2005,Journal of Scheduling(4):323~351
  • 6H. Z. Jia,A. Y. C. Nee,J. Y. H. Fuh,Y. F. Zhang. A modified genetic algorithm for distributed scheduling problems[J] 2003,Journal of Intelligent Manufacturing(3-4):351~362
  • 7Ayten Turkcan,M. Selim Akturk. A problem space genetic algorithm in multiobjective optimization[J] 2003,Journal of Intelligent Manufacturing(3-4):363~378
  • 8Lixin Tang,Jiyin Liu. A modified genetic algorithm for the flow shop sequencing problem to minimize mean flow time[J] 2002,Journal of Intelligent Manufacturing(1):61~67

二级参考文献13

  • 1樊长虹,陈卫东,席裕庚.动态未知环境下一种Hopfield神经网络路径规划方法[J].控制理论与应用,2004,21(3):345-350. 被引量:16
  • 2Cheng-Dong Wu,Ying Zhang,Meng-Xin Li,Yong Yue.A Rough Set GA-based Hybrid Method for Robot Path Planning[J].International Journal of Automation and computing,2006,3(1):29-34. 被引量:6
  • 3朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593. 被引量:46
  • 4Chekhova E,Barton P I,Gorak A. Optimal Operation Processes of Discrete-Continuous Biochemical Processes[J]. Computers and Chemical Engineering,2000, 24(2-7) : 1167-1173.
  • 5Lai K-H, Ngai E W T,Cheng T C E. An Empirical Study of Supply Chain Performance in Transport Logistics[J]. International Journal of Production Economics 2004,87 (3) : 321- 331.
  • 6Barad M,Even Sapir D. Flexibility in Logistic Systems-Modeling and Performance Evaluation[J]. International Journal of Production Economies 2003,85(2): 155-170.
  • 7Lai K-H, Ngai E W T, Cheng T C E. Measures for Evaluating Supply Chain Performance in Transport Logistics[J]. Transportation Research Part E,2002,38(6) : 439- 456.
  • 8Ebben M J R,van der Heijden M C,van Harten A. Dynamic Transport Scheduling Under Multiple Resource Constraints [J]. European Journal of Operational Research, 2005, 167 (2): 320-335.
  • 9Min H,Ko H J,Ko C S. A Genetic Algorithm Approach to Developing the Multi-echelon Reverse Logistics Network for Product Returns[J]. International Journal of Management Science, 2006, 34(1) : 56-69.
  • 10Kroese D P, Nicola V F. Efficient Estimation of Overflow Probabilities in Queues with Breakdowns[J]. Performance Evaluation 1999,36-37(1-4) : 471-484.

共引文献16

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部