摘要
多项式核函数由于具有良好的泛化性能而受到重视,并被研究用于文本分类问题。针对多项式核学习能力较差的缺点,将学习能力较强的条件正定核与多项式核构成一个混合核函数作为改进的多项式核。实验表明,改进的多项式核SVM文本分类器的分类效果要好于多项式核SVM文本分类器。
Polynomial kernel is investigated and widely used for text categorization because of it' s high generalization performance. For the polynomial kernel low study performance' s fault, this paper combined conditionally positive definite kernel which had high study performance with polynomial kernel as an improved polynomial kernel. The experiment results show that the improved polynomial kernel SVM classifier for text categorization is superior to polynomial kernel SVM classifier for text categorization.
出处
《计算机应用研究》
CSCD
北大核心
2009年第8期2905-2907,共3页
Application Research of Computers
基金
重庆市科委自然科学基金计划资助项目(CSTC2007BB2372)
中国博士后科学基金资助项目(20070420711)
关键词
支持向量机
多项式核
条件正定核
文本分类
SVM
polynomial kernel
conditionally positive definite kernel
text categorization