期刊文献+

IRST(k,l)-Index:一种支持分支路径查询的高效XML结构索引

IRST(k,l)-Index:an Efficient XML Structural Index for Branching Path Queries
下载PDF
导出
摘要 为快速准确地查询图结构XML文档,本文在互关联后继树(IRST)的基础上,引入结构索引的相似性归并思想,提出一种基于互关联后继树且支持分支路径查询的高效XML结构索引—IRST(k,l)-index,并给出该索引的快速创建和查询算法.经实验验证,与国际上同类索引相比,该索引的创建速度更快、查询效率更高、空间开销更小. To speed up queries over graph-structured XML documents, on the basis of Inter-Relevant Successive Trees (IRST), we introduce the idea of similarity merging from structural index, and propose an efficient IRST-based structural index for branching path queries, IRST(k,l)-index. Moreover, its quick construction and query algorithms are presented. Compared with the same kind of indexes, experiments results show that IRST(k,l)-index performs more efficient in terms of space consumption and query performance, while using significantly less construction time.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第8期1546-1554,共9页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60473070 60736016 70471011)资助
关键词 XML 半结构化数据 结构索引 互关联后继树 分支路径查询 XML semi-structured data structural index IRST branching oath querv
  • 相关文献

参考文献3

二级参考文献26

  • 1R Wille. Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications, 1992, 23: 493~515
  • 2L Nourine, O Raynaud. A fast algorithm for building lattices. Information Processing Letters, 1999, 71(1): 199~204
  • 3R Godin, R Missaoui, H Alaoui. Incremental concept formation algorithms based on Galois(concept) lattices. Computational Intelligence, 1995, 11(2): 246~267
  • 4B Ganter, R Wille. Formal Concept Analysis Mathematical Foundations. New York: Springer-Verlag, 1999
  • 5G Stumme, R Taouil, Y Bastide, et al. Fast computation of concept lattices using data mining techniques. In: Proc of the 7th Int'l Workshop on Knowledge Representation Meets Databases. Berlin: Technical University of Aachen, 2000. 129~139
  • 6胡运发.互关联后继树--一种新型全文数据库数学模型.技术报告: TR02-031[R].复旦大学计算机与信息技术系,2002..
  • 7R. Agrawal, R. Srikant. Fast algorithms for mining association rules. VLDB 1994, Santiago, Chile, 1994.
  • 8A. Savasere, E. Omiecinski, S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB 1995,Zurich, Switzerland, 1995.
  • 9J.S. Park, M. S. Chen, P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD 1995, San Jose,California, USA, 1995.
  • 10H. Toivonen. Sampling large databases for association rules.VLDB 1996, Bombay, India, 1996.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部