期刊文献+

人工神经网络在配煤过程状态建模中的应用研究 被引量:10

INVESTIGATION OF ARTIFICIAL NEURAL NETWORKS IN COAL BLENDING
下载PDF
导出
摘要 本文详细介绍了人工神经网络应用于状态建模的方法.对神经网络应用中的一些难点提出了切实可行且有效的解决措施,并举例作了应用示范.同时还介绍了神经网络方法应用于优化动力配煤的情况,并就神经网络方法在优化动力配煤中的进一步应用作了展望. A complex engineering system is usually characterized by a number of interacting factors in which the relationship between these factors is not precisely known. So establishing an empirical model to predict these systems is a very troublesome task. This paper demonstrates the use of back-propagation (BP) neural network to alleviate this problem. How to model a complex system with BP network is introduced in detail, including the solutions ofsome key and knotty questions such as initialization of BP network, determination of the architecture of BP network and choice of training precision and so on. Based on our experience, some new and useful advice has been put forward. As a demonstration, applications of BP neural network in predicting coal ash fusion temperature and in optimizing coal blending are presented. The results indicate that our advice is helpful for modeling a complex system satisfactorily. At last, the prospect of application of artificial neural networks in coal blending are given.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 1998年第5期637-641,共5页 Journal of Engineering Thermophysics
基金 "八五"国家重点科技攻关项目 浙江省重大科技攻关项目
关键词 人工神经网络 误差反播算法 动力配煤 配煤 artificial neural networks, back propagation (BP) algorithm, coal blending
  • 相关文献

参考文献5

二级参考文献16

共引文献28

同被引文献69

引证文献10

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部