期刊文献+

矿山强酸性多金属污染土壤修复及麻疯树植物复垦条件研究 被引量:19

Remediation of strongly acidic mine soils contaminated by multiple metals by plant reclamation with Jatropha curcas L. and addition of limestone
原文传递
导出
摘要 采用温室盆栽实验,研究了在不同剂量(质量分数分别为0、0.10%、0.25%、0.5%和1.0%)石灰石改良条件下,大宝山矿强酸性多金属不同污染程度土壤中麻疯树的生长状况和吸收金属特征,并探讨了麻疯树在酸性土壤中生长的抑制因素和石灰石改良适宜剂量.研究表明,在低污染酸性土壤中,Cu和Pb的高活性可能是抑制麻疯树生长的主要因素;而在高污染酸性土壤中,Cd、Cu、Zn等金属的高活性及由强酸引起的Al毒也可能是抑制麻疯树生长的主要因素;石灰石通过提高土壤pH值和降低多金属的生物有效态含量,促进了麻疯树在低污和高污土壤中的生长,其最佳剂量分别为0.25%和0.5%;石灰石可以不同程度地降低麻疯树地上部和地下部的Cd、Cu、Pb、Zn和Al含量,同时随石灰石用量的增加,其金属含量基本呈降低趋势;麻疯树地下部金属含量高于地上部,且石灰石对麻疯树地下部金属(除Cd外)含量降低幅度较地上部大.因此,种植麻疯树与石灰石改良是联合修复大宝山矿酸性多金属污染土壤的有效措施之一. In a greenhouse pot experiment, the dose-response effects of limestone addition (mass fractions 0,0.1% ,0.25% ,0.5% and 1.0% ) on the growth performance and metal uptake characteristics of Jatropha curcas L. grown on different multi-metal contaminated, strongly acid soils from Dabao Mountain mine were studied. Factors suppressing plant growth as well as the feasible dosage of limestone are also discussed. In the soils with lower levels of pollution, high bio-availabilities of Cu and Pb appeared to be the primary factors inhibiting the growth of Jatropha curcas L. , while in highly polluted soils, the growth inhibition of Jatropha curcas L. mainly resulted from the high bio-availability of Cd, Cu and Zn, as well as Al toxicity caused by the strong acidity. The growth performance of Jatropha curcas L. was improved both in the lower and highly polluted soils by the increase of soil pH and decrease of bio-available metal contents ( Cd, Cu, Pb, Zn and A1) achieved by the addition of limestone. The optimum dosage of limestone was 0.25% for soils with lower pollution levels and 0.5% for soils with higher pollution levels. The concentrations of Cd, Cu, Pb, Zn and Al in the shoots and roots of Jatropha curcas L. were reduced to different extents by the limestone and basically decreased with the increasing amount of limestone. The metal concentrations in roots were higher than in shoots, and the drop in metal concentrations (except Cd) caused by the limestone was higher in roots than in shoots. Therefore, the combination of planting Jatropha curcas L. and limestone amendment is one of the most effective ways to remediate acid soils from Dabao Mountain which are polluted with multiple heavy metals.
出处 《环境科学学报》 CAS CSCD 北大核心 2009年第8期1733-1739,共7页 Acta Scientiae Circumstantiae
基金 广东省自然科学基金研究团队项目(No.06202438) 国家高技术研究发展计划(863)项目(No.2007AA061001) NFSC-广东联合基金重点项目(No.U0833004)~~
关键词 植物复垦 石灰石 麻疯树 多金属污染 大宝山 plant reclamation limestone Jatropha curcas L. multi-metal contamination Dabao Mountain
  • 相关文献

参考文献6

  • 1邹晓锦,仇荣亮,周小勇,郑文晖.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报,2008,28(7):1406-1412. 被引量:106
  • 2周建民,党志,司徒粤,刘丛强.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172-1176. 被引量:149
  • 3黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169. 被引量:263
  • 4H.-Y. Peng,X.-E. Yang. Effect of Elsholtzia Splendens, Soil Amendments, and Soil Managements on Cu, Pb, Zn and Cd Fractionation and Solubilization in Soil under Field Conditions[J] 2007,Bulletin of Environmental Contamination and Toxicology(5):384~389
  • 5Autumn S. Wang,J. Scott Angle,Rufus L. Chaney,Thierry A. Delorme,Roger D. Reeves. Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens[J] 2006,Plant and Soil(1-2):325~337
  • 6N.S. Bolan,D.C. Adriano,P.A. Mani,A. Duraisamy. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition[J] 2003,Plant and Soil(2):187~198

二级参考文献12

  • 1李永涛,刘科学,张池,Thierry Becquer,Cécile Quantin,MarcB enedtti,Patrick Lavelle,戴军.广东大宝山地区重金属污染水田土壤的Cu Pb Zn Cd全量与DTPA浸提态含量的相互关系研究[J].农业环境科学学报,2004,23(6):1110-1114. 被引量:60
  • 2刘奕生,高怡,王康玮,麦小菡,陈广道,许通文.广东消化道恶性肿瘤高发村的病因学研究[J].中国热带医学,2005,5(5):1139-1141. 被引量:20
  • 3James F V, Michael H R. Heavy metal contamination of soils around a Pb- Zn smelter in Bukowno,Poland[J].Applied Geochemistry,1996, 11(1- 2): 11- 16.
  • 4Lee C H. Assessment of contamination load on water, soil and sediment affected by the Kongjujeil mine drainage,Republic of Korea[J]. Envi-ronmental Geology, 2003,44(5):501- 515.
  • 5Naicker K, Cukrowska E, McCarthy T S. Acid mine drainage arising from gold mining activity in Johannesburg,South Africa and environs[J]. Environmental Pollution,2003,22(1):29- 40.
  • 6Dang Z, Liu C Q, Martin J H. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J].Environmental Pollution, 2002, 118(3): 419- 426.
  • 7Atilla A, Murat B, Mustafa K, et al. Heavy metal pollution and acid drainage from the abandoned Balya Pb- Zn Sulfide Mine, NVV Ana-tolia, Turkey[J].Environmental Geology,2003,45(2):198- 208.
  • 8Chou H T, Ahn J S, Jung M C. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea[J]. Environ Geochem Health, 1998, 20(2): 77- 86.
  • 9Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au- Ag mine, Korea[J].Applied Geochemistry,2001, 16(11- 12):1369- 1375.
  • 10Shu W S, Ye Z H, Lan CY, et al. Acidification of lead- zinc mine tailings and its effect on heavy metal mobility[J].Environment Inter-national, 2001,26(5- 6):389- 394.

共引文献497

同被引文献316

引证文献19

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部