摘要
不仅把Pachpatte的离散不等式推广成时滞不等式,而且把不等式中的常数项推广成连续的正函数。推广后的不等式不仅包含了更多项,且不要求函数的单调性。利用单调化技巧给出了不等式中未知函数的估计。最后用得到的结果研究时滞差分方程初值问题解的唯一性与有界性。
In this paper, Pachpatte's discrete inequality is generalized to a retarded form, where not only delays are included but the contant term is generalized to a positive function. In the generalized inequality, there are more complex terms and the monotonicity of given functions is not required. Estimation of unknown function in the inequality is given by a technique of monotonization. Finally, the result is applied to discuss boundedness and uniqueness of solution for the initial value problem of a delay difference equation.
出处
《系统科学与数学》
CSCD
北大核心
2009年第7期865-876,共12页
Journal of Systems Science and Mathematical Sciences
基金
广西教育厅科学研究项目(200707MS112)
广西教改项目(200710961)
河池学院应用数学重点学科(200725)
自然科学研究项目(2006N001)
重点课程<数学建模(20089)
教改项目(2006E006
2007E006)
广西自然科学基金(200991265)项目资助
关键词
离散不等式
单调性
时滞差分方程
有界性
唯一性
Discrete inequality, monotonicity, delay difference equation, boundedness, uniqueness