期刊文献+

基于自回归模型滤波的舰船水压场信号实时检测 被引量:1

Real-Time Detection of Ship Hydrodynamic Pressure Field Signal Based on Autoregressive Model Filtering
下载PDF
导出
摘要 在对大量实测海浪水压场及舰船水压场信号深入分析的基础上,基于AR模型滤波有效地从风浪背景中实时检测舰船水压场信号。检测步骤如下:首先对海浪水压场信号建立自回归模型;以此模型系数建立白化滤波器并对接收信号进行滤波;其次对白化滤波器输出预测误差值做平滑处理并提取平滑处理后的值作为特征值;最后采用滑动检测方法对信号进行实时检测;若在一段时间内没有检测到目标信号,自动更新白化滤波器参数。通过实测数据和仿真数据对该检测算法进行验证。结果表明此方法简单易实现,在低信噪比情况下,能较好的检测到目标信号。 On the basis of deeply analyzing large amount of the ship hydrodynamic pressure field signals and the sea wave hydrodynamic pressure field signals, the ship hydrodynamic pressure field signal was detected in real-time, effectively, from sea wave background by the autoregressive (AR) model filtering. It is detecting steps that an AR model of ocean wave hydrodynamic pressure field is established; the received signal is filtered by prewhitening filter structured with the AR model coefficients; the prediction error output from the prewhitening filter is smoothed and extracted as the characteristic value; the target signal is detected in real-time by a sliding detection method; the parameters of prewhitening filter are updated automatically if the target signal isn"t detected in a short time. The effectiveness of the method was verified by comparing the measured data with the simulated data. The verified result shows that the method is simple and easy to realize and can detect the target signal effectively in low signal-to-noise ratio.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第7期999-1003,共5页 Acta Armamentarii
关键词 信息处理技术 海浪 水压场 自回归模型 白化滤波器 information processing technique ocean wave hydrodynamic pressure field autoregressire model prewhitening filter
  • 相关文献

参考文献4

二级参考文献20

  • 1林春生,邓大新,任德奎.风浪背景下舰船水压场信号的自适应AR模型预测滤波[J].海洋学报,2004,26(4):133-138. 被引量:16
  • 2[1]Jiang Liping,Gong Shenguang,Hu Weiwen,et al.A method for feature extraction of target signal based on wavelet decomposition[C]//Proceedings of the Third International Conference on Wavelet Analysis and Its Applications (WAA).Singapore:World Scientific Singapore 2003,2003:228-232.
  • 3[7]Sergios Theodoridis,Konstantinos Koutroumbas.Pattern recognition (Second Edition)[M].Beijing:Publishing House of Electronics Industry,2004:186-188.
  • 4[9]Matin T H,Howard B D,Mark H B.Neural design[M].Beijing:China Machine Press,2002:21-24.
  • 5Brown B J. On the prediction of band-limited signal from past samples [J]. Proc IEEE, 1986, 74 (11) :1596-158.
  • 6Papoulis A. A note on the predictability of bandlimited process[J]. Proc IEEE, 1985,73(8):1332-1333.
  • 7谢衷杰.时间序列分析[M].北京:北京大学出版社,1990..
  • 8CIOFFI John M, THOMAS Kailath. Fast, recursive - least - squares transversal filters for adaptive filtering[J]. IEEE Trans on ASSP, 1984, 32(2): 304-337.
  • 9Boashash B, O′shea P. A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques [J]. IEEE Trans. Acoustic Speech, Signal Processing. 1990, 38(11):1829-1841.
  • 10Thomas L H, Yoh-Han P. Detection and classification of underwater acoustic transients using neural networks [J]. IEEE Transactions on neural networks,1994,5(5):712-718.

共引文献27

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部