期刊文献+

L-稳定块格式及其在隐式微分方程中的实现 被引量:1

Construction of L-Stability Block Methods and Implementation for Implicit Differential Equations
下载PDF
导出
摘要 以指数函数的Padé逼近作为块格式的稳定函数,使用精度条件的理论——精度p的格式能精确求解解为不超过p次多项式的微分方程,以解的Taylor展式为基础,构造出L-稳定的块格式。并针对隐式微分方程进行实现,与常用的几种求解器进行了比较,结果表明构造的格式及其实现在效率上是优秀的。 Block methods were constructed with L-stability, using Pade approximations to the exponential function as stability function, and applying the theory that a method of order p is capable of solving any differential equation exactly if its solution is a polynomial of degree not exceeding p, and based on Taylor series. Implementation issues for implicit differential equations were proposed, and numerical experiments comparing this implementation with other well-known solvers were given. The results show that the solver turns out to be a robust and reliable one.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第15期4628-4631,共4页 Journal of System Simulation
关键词 块格式 隐式微分方程 刚性方程 微分一代数方程 初值问题 block methods implicit differential equations stiff problem differential-algebraic equations initial value problems
  • 相关文献

参考文献2

  • 1P. J. van der Houwen,J. J. B. de Swart. Parallel linear system solvers for Runge-Kutta methods[J] 1997,Advances in Computational Mathematics(1-2):157~181
  • 2H. A. Watts,L. F. Shampine. A-stable block implicit one-step methods[J] 1972,BIT(2):252~266

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部