期刊文献+

垃圾邮件过滤系统的探究与实现 被引量:8

Research and implementation of spam filtering system
下载PDF
导出
摘要 电子邮件已成为现代通信中不可缺少的一部分,但垃圾邮件的日益泛滥给计算机系统安全和人们的工作与生活带来了极大的威胁,反垃圾邮件已成为一个非常重要的任务。在传统的黑白名单过滤技术的基础上,引入了IP信誉评分机制,并结合基于规则的过滤技术和基于内容的贝叶斯过滤技术,从而建立了一个多层次的垃圾邮件过滤系统模型。同时在系统中应用了反馈学习技术,以弥补因误判而造成的损失和提高系统的准确率。经实践验证,本系统适用于用户终端使用,有较高的可行性。 E-mail has become indispensability of modem communications, but a large ofspam flood has seriously threated the computer system security and people' s work and life, so anti-spam already become a very important task. A sub-level of spam filtering system model based on the traditional black and white list filtering technology is established. The model also introduce the IP credibility score mechanism, combined with rules-based filtering technology and content-based Bayesian filtering technology. At the same time, feedback learning techniques is applied to compensate for the losses caused by misjudgment and improve the system accuracy. The practice verified the system is suitable for end users in a higher degree of feasibility.
作者 曾小宁
出处 《计算机工程与设计》 CSCD 北大核心 2009年第15期3522-3525,3530,共5页 Computer Engineering and Design
基金 广东省自然科学基金项目(06023728)
关键词 垃圾邮件 黑白名单 IP信誉 规则过滤 内容过滤 反馈学习 spam white and black lists IP reputation rule-based filtering content-based filtering feedback study
  • 相关文献

参考文献3

二级参考文献20

  • 1张宏烈.支持向量机在字符识别中的应用研究[J].微计算机信息,2006(04Z):245-247. 被引量:11
  • 2中国互联网络信息中心.第十三次《中国互联网络发展状况统计报告》[R].,2004,1..
  • 3上海艾瑞市场咨询公司.中国反垃圾邮件市场研究报告[R].,2003,11..
  • 4.[EB/OL].http://www. ai. mit. edu/~jrennie/ifile/.,.
  • 5Sahami M, Dumais S,et al. A Bayesian Approach to Filtering Junk E-Mail. Learing for Text Categorization -Papers from the AAAI Workshop,Madison Wisconsin, 1998.
  • 6Chen Duhong, Tongjie, et al. Spam Email Filter Using Naive Bayesian, Decision Tree, Neural Network and AdaBoost. http://www. cs. iastate. edu/~tongjie/spamfilter/paper. pdf.
  • 7Androutsopoulos I,Paliouras G,et al. Learning to filter spam email : a comparison of a naive Bayesian and a memory-based approach. In:Proc. of the workshop "Machine Learning and Textual Information Access", 4th European Conf. on PKDD-2000, Lyon,France, Sep. 2000.
  • 8Langley P,Wayne I,Thompson K. An Analysis of Bayesian Classifiers. In: Proc. of the 10thNational Conf. on Artificial Intelligence,San Jose,California, 1992.
  • 9Domingos P ,Pazzani M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 1997,29:103 ~130?A?A.
  • 10Perone M. An Overview of Spam Blocking Techniques[R]. Barracuda Networks Corp., 2004.

共引文献23

同被引文献44

  • 1李洋,方滨兴,王申.基于用户反馈的反垃圾邮件技术[J].计算机工程,2007,33(8):130-132. 被引量:9
  • 2中国互联网协会反垃圾邮件中心.2009年第一季度中国反垃圾邮件调查报告.2009.
  • 3Paul Graham.Better Bayessian Flitering.http://www.paulgraham.com/better.html.2003.
  • 4N Chatterjee.A Statistical Approach for Similarity Measurement Between Sentences for EBMT.2003.
  • 5Ontology理论研究和应用建模.Ontology研究综述》w3cOntology研究组文档以及Jena编程应用总结.2004.10.
  • 6SiRPAC,http://www.w3.org/RDF/Implement ations/SiRPAC/.
  • 7中国反垃圾邮件联盟[EB/OL].http://www.anti-spam.org.cn.
  • 8Shrestha Raju, LIN Yaping, CHEN Zhiping. Bayesian Spam Filtering Based on Co-Weighting Multi-Estimations [ C ]//Progress in Intelli- gence Computation & Applications ,2009:500-505.
  • 9Jiansheng Wu, Tao Deng. Research in Anti-Spam Method Based on Bayesian Filtering[ C ]//2008 IEEE Pacific-Asia Workshop on Compu- tational Intelligence and Industrial Application,2008:887- 891.
  • 10Chun-Chao Yeh, Soun-Jan Chiang. Revisit Bayesian approaches for Spam Detection [ C ]//The 9th International Conference for Young Computer Scientists,2008:659 - 664.

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部