摘要
非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种常用的非负多元数据描述方法.处理数据矩阵集时,NMF描述力不强、推广性差.为解决这两个问题,并保留NMF的好特性,该文提出了非负矩阵集分解(Non-negative Matrix Set Factorization,NMSF)的概念,并在NMSF的框架下系统研究了基于双线性型的非负矩阵集分解(Bilinear Form-Based Non-negative Matrix Set Factorization,BFBNMSF),构造了单调下降的BFBNMSF算法.理论分析和实验结果均表明:处理数据矩阵集时,BFBNMSF比NMF描述力强、推广性好.由此可认为,此时BFBNMSF比NMF更善于抓住数据的本质特征.
Non-negative Matrix Factorization (NMF) is a popular technique for representations of non-negative multivariate data. While treating a set of matrices, NMF is confronted with two main problems (unsatisfactory accuracy of representation and bad generality). In this paper, Non-negative Matrix Set Factorization (NMSF) is conceived to overcome the two problems and to retain NMF's good properties. Under the frame of NMSF, Bilinear Form-Based Non-negative Matrix Set Factorization (BFBNMSF) is systematically studied, and a monotonic algorithm of NMF.
出处
《计算机学报》
EI
CSCD
北大核心
2009年第8期1536-1549,共14页
Chinese Journal of Computers
基金
国家自然科学基金(60872084)资助~~
关键词
非负矩阵集分解
双线性型
非负矩阵分解
多元数据描述
图像描述
特征提取
Non-negative Matrix Set Factorization (NMSF)
bilinear form
Nonnegative Matrix Factorization (NMF)
multivariate data representation
image representation
feature extraction