期刊文献+

基于双线性型的非负矩阵集分解 被引量:6

Bilinear Form-Based Non-Negative Matrix Set Factorization
下载PDF
导出
摘要 非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种常用的非负多元数据描述方法.处理数据矩阵集时,NMF描述力不强、推广性差.为解决这两个问题,并保留NMF的好特性,该文提出了非负矩阵集分解(Non-negative Matrix Set Factorization,NMSF)的概念,并在NMSF的框架下系统研究了基于双线性型的非负矩阵集分解(Bilinear Form-Based Non-negative Matrix Set Factorization,BFBNMSF),构造了单调下降的BFBNMSF算法.理论分析和实验结果均表明:处理数据矩阵集时,BFBNMSF比NMF描述力强、推广性好.由此可认为,此时BFBNMSF比NMF更善于抓住数据的本质特征. Non-negative Matrix Factorization (NMF) is a popular technique for representations of non-negative multivariate data. While treating a set of matrices, NMF is confronted with two main problems (unsatisfactory accuracy of representation and bad generality). In this paper, Non-negative Matrix Set Factorization (NMSF) is conceived to overcome the two problems and to retain NMF's good properties. Under the frame of NMSF, Bilinear Form-Based Non-negative Matrix Set Factorization (BFBNMSF) is systematically studied, and a monotonic algorithm of NMF.
作者 李乐 章毓晋
出处 《计算机学报》 EI CSCD 北大核心 2009年第8期1536-1549,共14页 Chinese Journal of Computers
基金 国家自然科学基金(60872084)资助~~
关键词 非负矩阵集分解 双线性型 非负矩阵分解 多元数据描述 图像描述 特征提取 Non-negative Matrix Set Factorization (NMSF) bilinear form Nonnegative Matrix Factorization (NMF) multivariate data representation image representation feature extraction
  • 相关文献

参考文献1

二级参考文献37

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3D D Lee,H S Seung.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401 (6755):788 -791.
  • 4S E Palmer.Hierarchical structure in perceptual representation[J].Cogn Psychol,1977,9(3):441 -474.
  • 5E Wachsmuth,M W Omm,D I Perrett.Recognition of objects and their component parts:Responses of single units in the temporal cortex of the macaque[J].Cereb Corte,1994,4(5):509-522.
  • 6N K Logothetis,D L Sheinberg.Visual object recognition[J].Annu Rev Neurosci,1996,19(1):577-621.
  • 7I Biederman.Recognition-by-components:A theory of human image understanding[J].Psychol Rev,1967,94(2):115-147.
  • 8S Ullman.High-Level Vision:Object Recognition and Visual.Cognition[M].Cambridge:MIT Press,1996.
  • 9D J Field.What is the goal of sensory coding[J]? Neural Computation,1994,6(4):559-601.
  • 10P O Hoyer.Non-negative rnatrix factorization with sparseness constraints[J].J of Math Learning Res,2004,5(9):1457-1469.

共引文献104

同被引文献54

  • 1杨博,苏小红,王亚东.基于注意力模型的混合学习算法[J].软件学报,2005,16(6):1073-1080. 被引量:5
  • 2Lee D D, Seung H S. Algorithms for Nonnegative Matrix Factorization[C] //Proc. of Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000: 556-562.
  • 3Lin C J. Projected Gradient Methods for Nonnegative Matrix- factorization[D]. Taipei, China: National Taiwan University, 2005.
  • 4Hoyer P O. Nonnegative Matrix Factorization with Sparseness Constraints[J]. Journal Machine Learning Research, 2004, 5(9): 1457-1469.
  • 5Feng Tao, Li S Z, Shum H Y, et al. Local Nonnegative Matrix Factorization as a Visual Representation[C] //Proc. of the 2nd Int’l Conf. on Development and Learning. Washington D. C., USA: IEEE Computer Society, 2002.
  • 6Nicolas G. Using Underapproximations for Sparse Nonnegative Matrix Factorization[J]. Pattern Recognition, 2010, 43(4): 1676- 1687.
  • 7Yin Haiqing, Liu Hongwei. Nonnegative Matrix Factorization with Bounded Total Variational Regularization for Face Recognition[J]. Pattern Recognition Letters, 2010, 31(16): 2468-2473.
  • 8D D, Seung H S. Learning the parts of objects by non - negative matrix factorization. Nature[J]. 1999, 401 (6755) :788 -791.
  • 9Boutsidis C, Gallopoulos E. SVD-based initialization: A head start on nonnegative matrix factorization [ J ]. Pattern Recognition, Issue 4, April 2008,41 (4) : 1350 - 1362.
  • 10LEE D D, SEUNG H S. Algorithms for non-negative matrix factoriza- tion [ C ]//Advances in Neural Information Processing 13 (Proc NIPS). 2000:556-562.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部