期刊文献+

傅立叶变换中红外光谱估测水稻叶片氮素含量的研究 被引量:6

Determination of leaf nitrogen in rice using FTIR spectroscopy
下载PDF
导出
摘要 通过不同氮素水平的水稻田间试验,在分析测定了水稻叶片叶绿素、氮素等农学参数后,采用傅立叶中红外光谱仪测定了水稻孕穗期叶片干样的透射光谱,利用协同偏最小二乘算法(siPLS)分析选取了傅立叶变换红外光谱估测水稻氮素含量的敏感波段及其组合。结果表明,其最优主成分数是9个,最佳估测建模的波段组合分别为1350.891~586.57,1587.531~822.40和3709.413~943.72 cm^-1;建立的水稻氮素预测模型的精度较高,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.1538和0.1933,预测值与化学分析获得的叶片总氮浓度之间的交互相关系数和独立检验相关系数分别为0.9393和0.6649,高于中红外光谱指数NFS和NFSA的预测精度。说明利用傅立叶红外光谱作为水稻氮含量的诊断技术是可能的,值得进一步验证和完善。 The time and quantity of N fertilization is considered as a key technique for high yield and quality in crop production. Based on the rice field experiment with different N rates, the mid-IR transmittance spectra of the dried and ground leaf samples were determined by Fourier transform infrared (FTIR) spectroscopy, and then the estimation model for leaf nitrogen content was built with the obtained mid-IR transmittance spectra and synergy interval partial least square algorithm (siPKS). The optimal siPLS model was obtained with 100 intervals and 9 PLS components. The best combinations of spectral regions selected were 1350.89-1586.57, 1587.53-1822.40 and 3709.41-3943.72 cm^-1. The value of RMSECV (root mean square error of cross-validation) is 0. 1538, and correlation coefficient (r) was 0.9393 in calibration set, and the RMSEP (root mean square error of prediction) was 0.1933 and correlation coefficient (r) was 0.6649 for test data set. Furthermore, compared with spectral indices NFS and NFSA, this model was more reliable and representative. It was suggested that FTIR spectroscopy may be considered as a diagnosis technology for leaf nitrogen content in rice.
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2009年第4期750-755,共6页 Journal of Plant Nutrition and Fertilizers
基金 国家自然科学基金项目(30571112)资助
关键词 水稻 傅立叶变换中红外光谱(FTIR) siPLS rice nitrogen FTIR siPLS
  • 相关文献

参考文献12

  • 1Schepers J S, Moravek M G, Alberts E E, Frank K D. Maize production impacts on groundwater quality[J]. J. Environ. Qual. , 1991, 20 (1) :12-16.
  • 2Huang J L, He F, Cui K H et al. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter[J]. Field Crops Res., 2008, 105: 70-80.
  • 3Peng S B, Buresh R J, Huang J L et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J].Field Crops Res., 2006, 96: 37-47.
  • 4Hoel B O, Solhaug K A. Effect of irradiance on chlorophyll estimation with the Minolta SPAD- 502 leaf chlorophyll meter[J]. Ann. Bot., 1998, 82: 389-392.
  • 5Esfahani M, Ali Abbasi H R, Rabiei B, Kavousi M. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD) [J]. Paddy Water Environ., 2007, 6(2) : 1-8.
  • 6Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. Eur. J. Agron., 2006, 24: 349-356.
  • 7Xue L H, Cao W X, Luo W H et al. Monitoring leaf nitrogen status in rice with canopy spectral reflectance [ J ]. Am. Soc. Agron., 2004, 96: 135-142.
  • 8Liang S. Quantitative remote sensing of land surfaces[ M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004.
  • 9Zhou Q F, Shen Z Q, Wang R H. Fourier transform infrared spectral difference of leaf tips in rice related to nitrogen fertilizer rates [ J ]. Acta Bot. Sin., 2002, 44: 547-550.
  • 10褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:569

二级参考文献84

共引文献597

同被引文献95

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部