期刊文献+

酵母细胞表面工程在生物乙醇生产中的应用 被引量:1

Application of yeast cell surface engineering on production of bioethanol
下载PDF
导出
摘要 介绍了国内外利用酵母表面工程转化各种生物质原料生产生物乙醇的最新技术进展。该技术为在酵母表面基因水平固定淀粉酶、纤维素酶和木聚糖酶从而生产乙醇提供了新的策略。重点阐述了利用淀粉质和木质纤维素原料的重组酿酒酵母表达系统,并对其在生物乙醇生产中的应用潜力以及目前存在的问题做了初步总结。 This paper gives an insight into recent technological progresses in the production of bioethanol using surface engineered yeast, which provides strategies to genetically immobilize amylolytic, cellulolytic and xylanolytic enzymes on yeast cell surface for the production of fuel ethanol from biomass. The expression system of recombinant saccharomyces cerevisiae utilizing starchy and lignocellulosic biomass is highlighted, and its potential of application in bio-ethanol production and also present existing problems are primarily summarized.
作者 杨炎锋
出处 《化工进展》 EI CAS CSCD 北大核心 2009年第8期1415-1420,1463,共7页 Chemical Industry and Engineering Progress
关键词 生物乙醇 细胞表面工程 生物质 酵母 可持续发展 bioethanol cell surface engineering biomass yeast sustainable development
  • 相关文献

参考文献33

  • 1Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresour Technol., 2008, 99: 5270-5295.
  • 2van Maris A J, Abbott D A, Bellissimi E, et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae : current status [J]. Antonie Van Leeuwenhoek, 2006, 90(4): 391-418.
  • 3Murai T, Ueda M, Yamamura Y, et al. Construction of a starch utilizing yeast by cell surface engineering [J]. Appl. Environ. Microbiol., 1997, 63: 1362-1366.
  • 4Mitsuyoshi U, Atsuo T. Genetic immobilization of proteins on the yeast cell surface [J]. BiotechnologyAdvances, 2000, 18: 121-140.
  • 5Gai S A, Wittrup K D. Yeast surface display for protein engineering and characterization [J]. Current Opinion in Structural Biology, 2007, 17(4): 467-473.
  • 6Kosugi A, Kondo A, Ueda M. Production of ethanol from cassava pulp v/a fermentation with a surface-engineered yeast strain displaying glucoamylase [J]. Renewable Energy, 2009, 34: 1354-1358.
  • 7Matsumoto N, Fukunishi O, Miyanasa M, et al. Industrialization of a non-cooking system for alcoholic fermentation from gains [J]. Agric. Biol. Chem., 1982, 46: 1549-1558.
  • 8Kondo A, Shigechi H, Abe M, et al. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase [J]. AppL Microbiol. Biotechnol., 2002, 58: 291-296.
  • 9Shigechi H, Uyama K, Fujita T, et ai. Effcient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting a-amylase [J]. J. Mol. Catal. B, 2002, 17: 179-187.
  • 10Shigechi H, Fujita Y, Koh J, et al. Energy saving direct ethanol production from low temperature cooked corn starch using a cell surface engineered yeast strain co-displaying glucoamylase and a-amylase [J]. Biochem. Eng. J., 2000, 350: 149-153.

二级参考文献19

共引文献5

同被引文献24

  • 1杨涛,马美湖.纤维素类物质生产酒精的研究进展[J].中国酿造,2006,25(8):11-15. 被引量:17
  • 2Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science ,2007,315:804-807.
  • 3Zhang Y H P, Hitmncl M E, Mielenz J R. Outlook for cellutase improvement: screening and selection strategies [J]. Biotechnol Adv ,2006,24:452-481.
  • 4Abdelbanat B M A, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the tradi- tional process using mesophilic yeast? [J]. Appl Microbiol Biotechnol ,2010,85:861-867.
  • 5D'Amore T, Celotto G, Russell 1, Stewart G G. Selection and optimization of yeast suitable for ethanol production at 40 ?C[J]. Enzyme Microb Technol , 1989,11:411-416.
  • 6Dmytruk 0 V, Dmyt'uk K V, Abbas C A, Voronovsky A Y, Sibirny A A. Engineering of xylose reduetase and overexpres- sion of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha[J]. Mierob Cell Fact ,2008,7:21.
  • 7Pessani N K, Atiyeh H K, Wilkins M R, Bellmer D D, Banat I M. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces nutrxianus IMB3: the effect of enzyme loading, temperature and high solid load- ings[J]. Bioresour Techonol ,2011,102: 10618-10624.
  • 8Ballesteros M, Oliva J M, Negro M 3, Manzanares P, Ball3s-teros I. Ethanol from lignocellulosic materials by a simulata- neous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875 [J]. Process Biochem, 2004,39: 1843-1848.
  • 9Banat I M, Nigam P, Marchant R. Isolation of thermotolerant, fermentative yeasts growing at 52 C and producing ethanol at 45 C and 50 C[J]. World J Microbiol Biotechnol, 19928:259-263.
  • 10Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamitsu M, et al. Construction of/3-glucosidase expression system using the multistress-tolerant yeast lssatchenkia orien- talis[J]. Appl Microbiol Biotechnol ,2010,87:1841-1853.

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部