期刊文献+

轴对称双喉道流体控制矢量喷管三维数值模拟 被引量:5

3D Computational Study of Axisymmetric Dual-throat Fluidic Thrust-vectoring Nozzles
下载PDF
导出
摘要 对轴对称双喉道流体控制矢量喷管的流场进行了数值模拟,研究了喷管气动参数(主、次流落压比)对其内特性(流量系数、推力系数、推力矢量角和推力矢量效率)的影响,并与试验数据进行了对比。研究结果表明,在计算工况下,当喷管次流流量比恒定时,喷管推力矢量角随主流落压比的升高而降低,喷管流量系数和推力系数先是随主流落压比的升高而升高,在某一主流落压比时达到最大值,而后喷管推力系数随主流落压比的升高逐渐降低,流量系数则基本维持不变。当喷管主流落压比固定时,随着次流落压比的升高,推力矢量角也随之增加,推力系数无明显变化,而流量系数则呈下降趋势。 Numerical studies of internal performance(discharge coefficient, thrust ratio, vector angle and thrust vectoring efficiency) on flow field of axisymmetric dual-throat fluidic thrust-vectoring nozzles were performed, and the computed data were compared with experimental data. The results indicated that for the steady secondary injection rates, vector angle reduced with increasing the primary flow pressure ratio, while discharge coefficient and thrust ratio increased with increasing the primary flow pressure ratio, and when it reached the highest, the thrust ratio gradually reduced and discharge coefficient kept steady. When the primary flow pressure ratio kept unchanged, the vector angle increased, thrust ratio kept steady and discharge coefficient reduced with increasing the secondary flow pressure ratio.
出处 《燃气涡轮试验与研究》 2009年第3期14-18,共5页 Gas Turbine Experiment and Research
基金 航空支撑项目(61901030201)
关键词 双喉道 喷管 次流 内特性 数值模拟 dual-throat nozzle secondary flow internal performance numerical study
  • 相关文献

参考文献5

  • 1Flamm J D.Experimental Study of a Dual-throat Fluidic Thrust-vectoring Nozzle Concept[R].AIAA 2005-3503,2005.
  • 2Deere K A,Berrier B L A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept[R].AIAA 2005-3502,2005.
  • 3Flamm J D.Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application[R].AIAA 2007-5084,2007,.
  • 4吴达,郑克扬.排气系统热力学[M].北京:北京航空航天大学出版社,1989.
  • 5张群锋,吕志咏,王戈一,刘志钢,金捷.轴对称射流矢量喷管的试验和数值模拟[J].推进技术,2004,25(2):139-143. 被引量:15

二级参考文献7

  • 1Thomas M Berens. Thrust vector behavior of highly integrated asymmetric nozzles for advanced flighter aircraft[ R]. AIAA 98-0948.
  • 2Mace J, Smereczniak P, Bowers D, et al. Advanced thrust vectoring nozzles for supersonic fighter aircraft [ R ]. AIAA 89-2816.
  • 3Gridley M C, Walker S. Propulsion integration issues for advanced flighter aircraft [ A ]. Advanced aero-engine concepts and controls[C]. AGARD-CP-572, June 1996.
  • 4Giuliano V J, Wing David J. Static investigation of a fixed-aperture exhaust nozzle employing fluidic injection for multiaxis thrust vector control[ R]. AIAA 97-3149.
  • 5Wing D J, Giuliano V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static condition [R]. ASME Fluidics Engineering Summer Meeting, FEDSM 97-3228.
  • 6Shyy W, Chen M-H, Sun C-S. Pressure-based multigrid algorithm for flow at all speeds[J]. AIAA J, 1992,30:2660- 2669.
  • 7Karki K C, Patankar S V. Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations [J]. AIAA J, 1989,27(9):1167 - 1174.

共引文献14

同被引文献53

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部