期刊文献+

前向神经网络:一个新的非参数回归方法 被引量:2

Feed-forward neural networks:A new approach to nonparametric regression
下载PDF
导出
摘要 从统计建模的观点,前向神经网络可以看作是一个新的非参数回归方法.通过模拟例子和实际例子对前向神经网络和局部多项式光滑方法的有限样本行为进行了对比,结果表明前向神经网络稍微优于局部多项式光滑方法.此外,对前向神经网络的优点和存在的问题进行了深入讨论. From the view of statistical modeling, the feed-forward neural networks can be regarded as a new ap proach to the nonparametric regression. The finite sample performance of the feed-forward neural networks is compared with that of the local polynomial smoothers by using simulated example and real example, the results demonstrate that the feed-forward neural networks performs a little better than the local polynomial smoothers. In addition, the advantages of the feed-forward neural networks and its difficulties in implementation are also dis cussed.
出处 《纺织高校基础科学学报》 CAS 2009年第2期207-211,共5页 Basic Sciences Journal of Textile Universities
关键词 前向神经网络 非参数回归模型 局部多项式光滑 feed-forward neural networks nonparametric regression models local polynomial smoothers
  • 相关文献

参考文献6

  • 1FAN J, GUBELS I. Local polynomial models and its application[ M]. London: Chapman and Hall, 1996.
  • 2CYBENKO G. Approximation by superpositions of sigmoidal function [ J ]. Mathematics of Control, Signals and Systems, 1989,2(4) :303-314.
  • 3HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximation[J]. Neural Networks, 1989,2:359-366.
  • 4GASSER T, MULLER H G, MAMMITZSCH V. Kernels for nonparametric curve estimation[ J]. J R Statist Soc B, 1986,47: 238-252.
  • 5SILVERMAN B W. Some aspects of the spline smoothing approach to nonparametric regression curve fitting[J]. J R Statist Soo B, 1985,47 : 1-52.
  • 6ANTONIADIS A, MACKEAGUE I W. Wavelet methods for curve estimation [ J ]. J Ameri Statist Assoe, 1994,89 (428) : 1 340-1 353.

同被引文献44

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部