期刊文献+

混合态数据库的Grover算法数学形式及其搜索成功率

Grover Algorithm and an Analysis of Successful Probability of Quantum Mixed State
下载PDF
导出
摘要 Grover提出了容量为N的数据库量子搜索法。只需进行O(N)次迭代就能以几乎为1的概率实现对目标的搜索。本文将文献[1]的Grover搜索法推广到混合态情形,给出了一个基于混合态的Grover搜索法,并分析了该搜索法成功的概率上界。进一步发现搜索法成功的概率完全依赖于所使用的初态(混合态)。该结论为了解量子噪声对Grover搜索法的影响提供一定的理论依据。最后通过例子说明了如何实施基于混合态的Grover搜索法。 Grover proposed how a quantum computer can find a single marked object in a database of size N by using only O(√N) queries of the oracle that identifies the object with the probability of finding the marked object being not exactly 1. The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability of finding the marked object is calculated and it is found that it depends strongly on the specific initial state. Our results contribute to analyze the influence of quantum noise on Grover algorithm based on pure state. Finally, we give few examples to show that for some extremely mixed initial states.
作者 毛多鹭
出处 《量子光学学报》 CSCD 北大核心 2009年第3期236-240,共5页 Journal of Quantum Optics
关键词 Grover搜索法 混合态 迭代 成功的概率 grover algorithm mixed state iteration successful probability
  • 相关文献

参考文献19

  • 1GROVER L K.Quantum Computers Can Search Arbitrarily Large Databases by a Single Query[J].Phys Rev Lett,1997,79:4709-4712.
  • 2DAEMS D,GUERIN S.Adiabatic Quantum Search with Atoms in a Cavity Driven by Lasers[J].Phys Rev Lett,2007,99:170503.
  • 3YANG W L,CHEN C Y,FENG M.Implementation of Three-qubit Grcver Search in Cavity QED[J].Phys Rev A,2007,76:054301.
  • 4LONG G L,YAN H Y,LI Y S,et al.Experimental NMR Realization of a Generalized Quantum Search Algorithm[J].Phys Lett A,2001,286:121.
  • 5GROVER L K.Quantum Computers can Search Rapidly by Using Almost Any Transformation[J].Phys Rev Lett,1998,80:4329.
  • 6HARRY B,ILAN N,HEIN R,et al.Robust Polynomials and Quantum Algorithms[J].Theory of computing systems,2007,40:593-604.
  • 7BHATTACHARYA N,VAN H B,VAN LINDEN VAN DEN HEUVELL,et al.Implementation of Quantum Search Algorithm using Classical Fourier Optics[J].Phys Rev Lett,2002,88:137901.
  • 8IVANOV S S,IVANOV P A,VITANOV N V.Simple Implementation of a Quantum Search with Trapped Ions[J].Phys Rev A,2008,78:030301 (R).
  • 9PUENTES G,LA MELA C,LEDESMA S,et al.Optical Implementation of Quantum Algorithms Using Programmable Liquid Crystal Displays[J].Phys Rev A,2004,69:042319.
  • 10张文弘.二维光子晶体中Grover搜索算法的实现(英文)[J].量子光学学报,2006,12(1):31-35. 被引量:1

二级参考文献26

  • 1CIRAC J I, ZOLLCR P, Quantu,n Computations with Cold Trapped Ions [J]. Pbys Rev Lett, 1995, 74: 4091-4094.
  • 2SLEATOR T, WEINFURTER H, Realizable Universal Quantum Logic Gates [J]. Phys Rev Lett, 1995, 74: 4087-4790.
  • 3GIOVANNETTI V, VITALI D, TOMBESI P, et al.Scalable quartum computation with cavity QED systems[J]. Phys Rev A, 2000,62 : 032306.
  • 4BARENCO A, DEUTSCH D, EKERT A, et al. Conditional Quantunl Dynamics and bogie Gates [J]. Phys Rev Lett, 1995, 74: 4083-4086.
  • 5MAKHLIN Y, SCHON G, SHNIRMAN A. Quantum-state engineering with Josephson-junetion devices [J]. Rev Mod Phys, 2001,73:357-400.
  • 6ANGH,AKIS D G, SANTOS M F, et al. Quantum computation in photomie crystals[Z]. quant-ph, 2004, 0410189 v4.
  • 7DE DOOD M J A, 1RV1NE W T M, BOUWMEESTER D. Nonlinear Photonic Crystals as a Source of Entangled Photons [J]. Phys Rev Lett, 2004, 93: 040504.
  • 8YABLONOVITCH E. Inhibited Spontaneous Emission in Solid-State, Physics and Electronics [J]. Phys Rev, Lett, 1987, 58: 2059-2062.
  • 9JOHN S. Strong localization of photons in certain disordered dielectrie superlattices [J]. Phys Rev Lett, 1987, 58: 2486-2489.
  • 10BAYINDIR M, OZBAY E. Heavy photons at coupled-cavity wavegukle band edges in a three-dimensional photonic crystal [J]. Phys Rev B, 2000, 62: R2247.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部