期刊文献+

自组织映射神经网络在入侵检测中的应用 被引量:1

Application of self-organization map neural network in intrusion detection
下载PDF
导出
摘要 提出了一种基于SOM神经网络的入侵检测方法。该方法采用有标签的数据训练SOM神经网络,然后根据训练的结果标记正常数据和异常数据聚类的神经元。检测时则根据被检测数据的最佳匹配神经元的标签判断攻击是否发生。为验证检测的有效性,采用KDD cup99的训练集与测试集,将基于SOM的检测方法与基于SVM的检测方法的检测效果做了对比。实验结果表明:基于SOM的入侵检测方法具有检测率高、训练时间短和通用性强等特点。 An intrusion detection method based on SOM is proposed.At training phase of the intrusion detection,SOM neural network is trained with labeled dataset and then label neurons with 'normal' or 'attack' according to the training result.During the procedure of detection,unknown data is determined whether it is normal or not according its' BMU's label.For validate the performance of this method,resuh of detection using SVM is compared to method proposed in this paper with KDD cup99 dataset,and the experiment shows that SOM based intrusion detection method has a better detection rate while consuming limit time.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第23期115-117,共3页 Computer Engineering and Applications
基金 国家242信息安全计划项目No.2006C27~~
关键词 自组织映射 入侵检测 网络安全 神经网络 支持向量机 Self-Organization Map (SOM) intrusion detection network security neural network Support Vector Machine (SVM)
  • 相关文献

参考文献10

  • 1Bace R G.Intrusion detection[M].[S.l.]:Macmillan Technical Publishing, 2000.
  • 2李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 3Lee Wen-ke,Stolfo S J,Mok K W.A data mining framework for building intrusion detection models[C]//The 1999 IEEE Symposium on Security and Privacy,Oakland,CA,1999.
  • 4Mukkamala S,Janoski G,Sung A.Intrusion detection using neural networks and support vector machines,neural networks[C]//Proceedings of the 2002 International Joint Conference, IJCNN'02,2002 : 1702-1707.
  • 5Ramadas M,Ostennann S,Tjaden B.Detecting anomalous network traffic with self-organizing maps[C]//Proc of 6th International Symposium on RAID'03,2003 : 36-54.
  • 6Gao Jian-hong,Xu Li-xin,Dai Ya-ping.An intrusion detection system model based on self-organizing map[C]//Proceedings of the 5th World Congress on intelligent Control and Automation, 2004, Hangzhou, China.
  • 7Kohonen T.Self-organizing maps[M].[S.l.]:Springer Verlag, 1995.
  • 8KDD Cup 1999 Data[EB/OL].(1999-10-28).http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html.
  • 9SOM toolbox for Matlab [EB/OL]. (2008).http://www.cis.hut.fi/proj ects/somtoolbox.
  • 10Chang C C,Lin C J.LIBSVM-a library for support vector machines[EB/OL]. (2008-04).http ://www.csie.ntu.edu.tw/-cjlin/libsvm.

二级参考文献1

  • 1张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..

共引文献78

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部