期刊文献+

基于一种新的蚁群算法的QoS组播路由问题的研究 被引量:2

Research on QoS multicast routing problem based on novel ant colony algorithm
下载PDF
导出
摘要 在解决QoS(Quality of Service)组播路由问题上,针对蚁群算法缺点,提出了一种融合量子粒子群算法(QPSO)思想的多行为蚁群算法。该算法采用QPSO作为前期搜索,根据各粒子历史最优值来初始化路径信息素浓度,后期利用多行为蚁群算法来优化路径。仿真结果表明:该算法寻优能力强,可靠性高,是解决QoS组播路由问题的有效方法。 In allusion to the flaws of ant colony algorithm,a multi-behaved ant colony algorithm in combination with QPSO is presented for solving the QoS muhicast routing problem.Firstly it adopts QPSO algorithm to approach early stage searching,and then initializing the concentration of pheromone based on each particle's historical optimum value,finally it makes use of multibehaved ant colony algorithm to optimize the path.The simulation results have demonstrated that this algorithm has strong optimization ability and high reliability.It's the effective algorithm in solving QoS multicast routing problem.
作者 张凌 毛力
出处 《计算机工程与应用》 CSCD 北大核心 2009年第23期123-126,共4页 Computer Engineering and Applications
关键词 服务质量 量子粒子群 多行为 蚁群算法 组播路由 Quality of Service ( QoS ) Quantum-behaved Particle Swarm Optimization ( QPSO ) multi-behaved ant colony multicastrouting
  • 相关文献

参考文献6

  • 1Sun J,Xu W B,Liu J.Parameter selection of quantum-behaved particle swarm optimization[C]//Advances in Natural Computation,Proceedings Lecture Notes in Computer,2005,3612:543-552.
  • 2Colormi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proc Europ Conf A rtifLife.Paris:Elsevier Publishing, 1991 : 134-142.
  • 3Dorigo M,Gambardella L M.Ant colony systcm:A cooperative learning approach to the traveling salesman prohlem[J].IEEE Transaetions on Evolutionary Computation, 1997,1 (1).
  • 4Dorigo M,Maniezzo V,Colorni A.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man. and Cybernetics-Part B, 1996,26( 1 ) : 1-13.
  • 5Gong B,Li L,Wang X 1.A novel QoS multicast routing algorithm based on ant algorithm[C]//International Conference on IEEE Wireless Communications,Networking and Mobile Computing,2007(WiCom 2007),2007:2025-2028.
  • 6Waxman B M.Routing of muhipoint connections[J].IEEE Journal on Selected Areas in Communication, 1988,6(9): 1617-1622.

同被引文献24

  • 1陈知美,顾幸生.基于蚁群算法的不确定条件下的Job Shop调度[J].山东大学学报(工学版),2005,35(4):74-79. 被引量:8
  • 2孙力娟,王汝传.基于蚁群算法和遗传算法融合的QoS组播路由问题求解[J].电子学报,2006,34(8):1391-1395. 被引量:26
  • 3刘金明,王新生,梁清梅.基于遗传模拟退火算法的QoS组播路由算法[J].计算机工程,2007,33(9):212-215. 被引量:5
  • 4HOLLAND J H. Adaptation in natural and artificial Systems [M]. Michigan: the University of Michigan Press, 1975.
  • 5DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):53-66.
  • 6WHITE T, PAGUREK B, OPPACHER F. ASGA:Improving the ant system by integration with genetic algorithms[C]. In: Proe.3rdGenetic Programming Conf.. July 1998.
  • 7GONG B, LI L, WANG X I. A novel QoS muhicast routing algorithm based on ant algorithm [C]//International Conference on IEEE Wireless Communications, Networking and Mobile Computing, 2007.
  • 8AHN S H, LEE S G, CHUNG T C. Modified ant colony system for coloring graphs [ C ]//Proceedings of the 2003 Joint Conference of the 4th International Conference on Information, Communications and Signal Processing and the 4th Pacific Rim Conference on Multimedia. Chicago, USA. Comm-unication and Signal Processing, 2003, 3: 1849-1853.
  • 9COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies [ C ]//Proceedings of the 1st European Conference on Aritficial Life. [ S. l] : [s. n. ], 1991:134-142.
  • 10DORIGO M. Optimization, learning and natural algorithms [ D ]. Italy: Department of Electronics, Politecnico diMilano, 1992.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部