期刊文献+

脉冲时滞微分方程的数值解法及其Matlab实现 被引量:2

Numerical Solution and Matlab Simulation of Impulsive Delay Differential Equations
下载PDF
导出
摘要 介绍了应用Runge-Kutta法求解脉冲时滞微分方程初值问题的基本算法,并给出了具体应用实例的数值仿真,仿真结果表明该方法是正确有效的. The authors applies Runge-Kutta methods to get the numerical solution of impulsive delay differential equations, and gives some examples of numerical simulation. The results show that the methods are successful and effective.
作者 何迎生
出处 《吉首大学学报(自然科学版)》 CAS 2009年第4期30-33,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省自然科学基金资助项目(07JJ6110)
关键词 脉冲时滞微分方程 RUNGE-KUTTA方法 数值解 impulsive delay differential equations Runge-Kutta methods numerical solution
  • 相关文献

参考文献7

二级参考文献22

  • 1Zhu W J,Petzold L R.Asymptotic stability of linear delay differential-algebraic equations and numerical methods.Appl.Number.Math.,1997,24:247-264.
  • 2Liu Y K.Runge-Kutta-collocation methods for systems of functional-differential and functional equations.Adv.Comput.Math.,1999,11:315-329.
  • 3Ascher U M,Petzold L R.The numerical solution of delay-differential-algebraic equations of retarded and neutral type.SIAM J.Numer.Anal.,1995,32:1635-1657.
  • 4Baker C T H,Paul C A H,Tian H.Differential algebraic equations with after-effect.J.Comput.Appl.Math.,2002,140:63-80.
  • 5Brenan K E,Campbell S L,Petzold L R.Numerical solution of initial-value problems in differential-algebraic equations.North-Holland: Elsevier,1989.
  • 6Li S F.B-convergence properties of multistep Runge-Kutta methods.math.Comput.,1994,62:565-575.
  • 7In′t Hout K J.Stability analysis of Runge-Kutta methods for systems of delay differential equations.IMAJ.Numer.Anal.,1997,17:17-27.
  • 8Barwell V K.On asymptotic behavior of of the solution of a differential difference equation[J].Utilita Math,1974,6:189 ~ 194.
  • 9Barwell V K.Special stability problems for functional differential equations[J].BIT,1975,15:130 ~ 135.
  • 10Jackiewicz Z.Asymptotic stability analysis of -methods for functional differential equations[J].Numer Math,1984,43:389 ~396.

共引文献15

同被引文献20

  • 1曾广钊.Maple软件在常微分方程中的应用[J].韶关学院学报,2003,24(12):19-22. 被引量:3
  • 2XU Xu, WANG Zai-hua. Effect of Small World Connection on the Dynamics of a Delayed Ring Network [J]. Nonlinear Dynamics, 2009, 56(1/2): 127-144.
  • 3Kuang K. Delay Differential Equations: With Applications in Population Dynamics[M]. New York: Academic Press, 1993.
  • 4Luzyanina T, Engelborghs K, Lust K, et al. Computation, Continuation and: Bifurcation Analysis of Periodic Solutions of Delay Differential Equations [J]. International Journal of Bifurcation and Chaos, 1997, 7(11): 2547-2560.
  • 5Lust K, Spence A, Champneys A R. An Adaptive Newton-Picard Algorithm with Subspaee Iteration for Computing Periodic Solutions [J]. SIAM Journal Scientific Computations, 1998, 19(4): 1188-1209.
  • 6Minamoto T, Nakao M T. A Numerical Verification Method for a Periodic Solution of a Delay Differential Equation [J]. Journal of Computational and Applied Mathematics, 2010, 235(3) : 870-878.
  • 7WANG Wan:yong, XU Jian. Multiple Scales Analysis for Double Hopf Bifurcation with 1 : 3 Resonances [J]. Nonlinear Dynamics, 2011, 66(1/2): 39-51.
  • 8YOU Xiang-chang, XU Hang. Analytical Approximations for the Periodic Motion of the Dulling System with Delayed Feedback [J]. Numerical Algorithms, 2011, 56(4): 561-576.
  • 9王万永.时滞耦合系统共振双Hopf分岔奇异性及其分类[D].上海:同济大学,2011.
  • 10Kupper T, LI Yong, ZHANG Bo. Periodic Solutions for Dissipative-Repulsive Systems [J]. Tohoku Mathematical Journal, 2000, 52(3): 321-329.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部