摘要
介绍了应用Runge-Kutta法求解脉冲时滞微分方程初值问题的基本算法,并给出了具体应用实例的数值仿真,仿真结果表明该方法是正确有效的.
The authors applies Runge-Kutta methods to get the numerical solution of impulsive delay differential equations, and gives some examples of numerical simulation. The results show that the methods are successful and effective.
出处
《吉首大学学报(自然科学版)》
CAS
2009年第4期30-33,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
湖南省自然科学基金资助项目(07JJ6110)