期刊文献+

高温自蔓延技术在环境保护领域中的应用 被引量:4

Application of Self-Propagating High Temperature Synthesis for Environmental Protection
原文传递
导出
摘要 高温自蔓延技术具有反应温度高、能量利用效率高、处理过程快速、不需要大设备和设施投入等特点,已在环境保护和污染控制领域得到了广泛的关注及研究。本文回顾了近20年来高温自蔓延技术在环境保护领域应用的研究状况,主要从以下4个方面进行综述:(1)高温自蔓延技术在固体废物处理、处置中的应用;(2)高温自蔓延技术在高放废物固化、稳定化中的应用;(3)高温自蔓延技术在有机污染控制过程中的应用;(4)高温自蔓延技术合成环境功能材料的应用等。文中着重介绍了高温自蔓延技术在各应用领域所取得的理论和工程实践成果,特别是近年来机械诱发自蔓延、全废物型自蔓延和自蔓延废物处理流水线等技术在废物处理和资源回收领域的应用。此外,还指出了环保高温自蔓延研究领域的不足并展望了今后的发展趋势。 Self-propagating high temperature synthesis (SHS) development attention in environmental protection and pollution control excellent energy utilization efficiency, low time consumption and low cost has been receiving increasing research and fields due to its high reaction temperature, for facility construction. During the last twenty years, SHS technology and its applications have undergone great changes and the research achievements are worthy of being summarized systematically. In this paper, the research status on the applications of SHS for environmental protection is reviewed mainly in the following four aspects: (1) SHS in solid waste treatment and disposal; (2) SHS in high level waste solidification and stabilization; (3) SHS in toxic organic pollutant destruction; (4) SHS in environmental funetion material synthesis, etc. The research achievements in basic theory and engineering application of SHS technology are elaborated with emphasis, especially for the development of mechanically induced SHS, all-wastes SHS and SHS treatment line for waste treatment and resource recovery in recent years. In addition, the deficiencies and the future developing perspectives of SHS are also put forward.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2009年第7期1693-1704,共12页 Progress in Chemistry
基金 国家自然科学基金项目(No.50708110)资助
关键词 高温自蔓延 废物处理处置 高放废物 有机氯污染物 环境催化剂 self-propagating high temperature synthesis waste disposal high-level waste organochlorine pollutants environmental catalyst
  • 相关文献

参考文献75

  • 1殷声(YinS).燃烧合成(Combustion Synthesis).北京:冶金工业出版社(Beijing:Metallurgical Industry Press),2004.1-45.
  • 2Merzhanov A G. Combust. Sci. Tech., 1994, 98:307-336.
  • 3Merzhanov A G. J. Mater. Chem., 2004, 14:1779-1786.
  • 4McCauley J W, Puszynski J A. Int. J. Serf-Propagating High- Temperature Synth., 2008, 17 : 58-75.
  • 5Cao G, Orru R, Licheri R, et al. Int. J. Serf-Propagating High- Temperature Synth., 2008, 17:76-84.
  • 6Vallauri D, Adrian I C A, Chrysanthou A. J. Europ. Ceram. Soc., 2008, 28:1697-1713.
  • 7Yeh C L, Chen Y D. Ceram. Int., 2007, 33:365-371.
  • 8Carole D, Frety N, Paris S, et al. Ceram. Int., 2007, 33: 1525- 1534.
  • 9Kim J S, Song J H, Chang M G, et al. J. Ceram. Process. Res., 2007, 8 : 70-73.
  • 10Amosov A P, Bichurov G V, Markov Y M, et al. Refract. Ind. Ceram., 1997, 38:431-434.

二级参考文献28

共引文献44

同被引文献24

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部