期刊文献+

二阶Hamilton系统周期解的存在性

Existence of periodic solutions for second order Hamiltonian system
下载PDF
导出
摘要 研究了二阶Hamilton系统{ü(t)=▽F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=■(0)-■(T)=0周期解的存在性问题,通过使用极小化原理,获得了周期解存在的一些充分性条件,所得结果改进了已有文献中的一些结果. By using the least principle, the existence of periodic solutions for second order Hamiltonian system was studied {ü(t)=▽F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=u·(0)-u·(T)=0 Some known results in the literature were improved.
出处 《佳木斯大学学报(自然科学版)》 CAS 2009年第4期590-592,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 二阶HAMILTON系统 周期解 极小化原理 second order Hamihonian system periodic solution the least action principle
  • 相关文献

参考文献6

  • 1Berger M.S., Schechter M., On the Solvability of Semilinear Gradient Operator Equations, Adv. Math., 1997, 25:97 - 132.
  • 2Willem M., Oscillations Forcees de Systemes Hamiltoniens, in: Public. Semin. Analyse Non Lineaire, Univ. Besancon, 1981.
  • 3Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
  • 4Tang C. L., Periodic Solutions of Nonautoncxr, ous Second Order Systems with γ - quasisubaditive Potential, J. Math. Anal. Appl., 1995, 189:671-675.
  • 5Wu X.P., Tang C. L., Periodic Solutions of a Class of Nonautonomous Second-order Systems, J. Math. Anal. Appl., 1999, 236: 227 - 235.
  • 6Tang C. L., Periodic Solutions of Nonautonmous Second Order Systems, J. Math. Anal. Appl., 1996, 202: 465-469.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部