摘要
研究了二阶Hamilton系统{ü(t)=▽F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=■(0)-■(T)=0周期解的存在性问题,通过使用极小化原理,获得了周期解存在的一些充分性条件,所得结果改进了已有文献中的一些结果.
By using the least principle, the existence of periodic solutions for second order Hamiltonian system was studied {ü(t)=▽F(t,u(t)),a.e.t∈[0,T],u(0)-u(T)=u·(0)-u·(T)=0 Some known results in the literature were improved.
出处
《佳木斯大学学报(自然科学版)》
CAS
2009年第4期590-592,共3页
Journal of Jiamusi University:Natural Science Edition
关键词
二阶HAMILTON系统
周期解
极小化原理
second order Hamihonian system
periodic solution
the least action principle