期刊文献+

分形油藏非牛顿幂律液的不稳定渗流 被引量:4

/NONSTEADY FLOW OF NON NEWTONIAN FLUIDS THROUGH FRACTAL RESERVOIR IN THE PRESENCE OF A THRESHOLD GRADIENT
下载PDF
导出
摘要 根据分形几何学并结合渗流力学,建立了无限圆柱对称有分形结构的油藏的单相微可压缩、具有起始压力梯度非牛顿幂律液径向流的解析压力不稳定模型,导出了描述分形油藏幂律流的新的偏微分方程。利用拉氏变换和格林函数,得出了分形油藏无限大地层中心一口井在定产量生产时及稳态和不稳态条件下的井底压力解和渐近解。 A new analytical pressure transient model is presented for calculating the pressure of single phase radial flow of slightly compressible non Newtonian and power law fluid in an infinite cylindrical symmetry reservoir with a fractal structure in the presence of a threshold gradient by using fractal geometry combined with mechanics of flow through porous media. The equations for describing power law flow in fractal reservoir are deduced. The analytical solutions of the equations for an infinite reservoir and a single well situation under the conditions of steady and unsteady flow situations are obtained. The early time and late time limiting forms of the wellbore pressure solutions are presented.
出处 《石油大学学报(自然科学版)》 CSCD 1998年第3期56-59,共4页 Journal of the University of Petroleum,China(Edition of Natural Science)
关键词 牛顿流体 幂律流体 分形学 油藏 渗流力学 non Newtonian fluid power law fluid Laplace transform Greens function fractal
  • 相关文献

参考文献1

  • 1Chang J,SPE Formation Evaluation,1990年,31页

同被引文献42

  • 1刘保县,鲜学福,王宏图,徐龙君.交变电场对煤瓦斯渗流特性的影响实验[J].重庆大学学报(自然科学版),2000,23(z1):41-43. 被引量:14
  • 2姚约东,葛家理.石油渗流新的运动形态及其规律[J].重庆大学学报(自然科学版),2000,23(z1):150-153. 被引量:4
  • 3李道品.我国低渗透油田开发探讨[J].石油消息,1998,(7).
  • 4Chang J, Yortsos Y C. Pressure transient analysis of fractal reservoir[J]. SPE Form Eval, 1990, 5(1): 31 -38.
  • 5Acuna J A, Ershagghi I, Yortsos Y C. Practical application of pressure transient analysis of naturally fractured reservoir [J]. SPE Form Eval, 1995, 10(3): 173-179.
  • 6Beier R A. Pressure transient model of a vertical fractured well in a fractal reservoir [J]. SPE Form Eval, 1994, 9(2): 122- 128.
  • 7Beier R A. Pressure transient field data showing fractal reservoir structure [C]. CIM/SPE Paper No. 90-4, International Technical Meeting of the Pet Soc of CIM and the SPE Calgary, Albert, 1990.
  • 8Chakrabarty C S, Farouqalim and Tortikew S. Transient flow behavior of non-Newtonian power-law fluids in fractal reservoir [C]. Paper CIM 93-06, 1993 Annual Technical Meeting of the Petroleum Society of CIM. Calgary, AB. May 9-11, 1993.
  • 9Ikoku C U, Ramey H J Jr. Transient Flow of non-Newtonian power-law fluids in porous media [J]. Society of Petroleum Enginees Formation Evaluation, 1979, 19(3): 164-174.
  • 10Ikoku C U, Ramey H J Jr, Pressure behavior during polymer flow in petroleum reservoir [J]. Journal of Energy Resources Technology, 1982, 104(1): 149-156.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部