摘要
针对扩频隐写会破坏图像局部平稳性而使其产生高频奇异性的缺点,提出一种基于小波奇异性分析的扩频隐写检测算法。通过分析待测图像不同尺度下小波系数模极大值数量的变化情况,提取8维特征向量作为Fisher分类器的输入向量并对其进行训练。对测试样本的检测和攻击实验结果表明,该算法的平均检测率达到80%以上,能够检测出隐写的大致频带范围并实施有效的滤波攻击,为隐秘信息的进一步提取奠定了基础。
Aiming at the shortcoming that spread spectrum steganography breaks image local stationarity, this paper presents a detection algorithm for spread spectrum steganography based on wavelet singularity analysis. It extracts 8 dimension feature vector as the input vector of Fisher classifier by analyzing the changes of wavelet coefficients modulus maximum on different scales of images to be detected, and uses a mass of samples to train Fisher classifier. The detection and attacking experimental results prove that the average detection rate of the algorithm is more than 80%, and it can detect the spectrum range in which the secret message is hidden and implement effective attack, which lays the foundation for extracting the stego message.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第15期159-161,共3页
Computer Engineering
关键词
隐写检测
扩频隐写
小波奇异性分析
高斯滤波器
FISHER分类器
stego-detection
spread spectrum steganography
wavelet singularity analysis
Gaussian filter
Fisher classifier