摘要
介绍一种定义近邻图上的高斯域(GF)及用于降维和分类的GF的相关知识,提出一种用于半监督回归的高斯域,能自动设置模型参数和近邻数,利用监督和无监督数据进行熵值查询选择从而进行主动学习。实验将其与半监督学习法进行比较并验证了GF的有效性。
A Gaussian Fields(GF) on nearest neighbor graph is defined by using a non-parametric technique. On the basis of it, a MAP criterion which can automatically set model parameter and numbers of nearest-neighbor k is proposed and entropy maximization query selection method for active learning by using supervised and unsupervised information is specified. Experimental results demonstrate effectiveness of GF compared with semi-active learning method.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第15期187-189,共3页
Computer Engineering
关键词
高斯域
半监督回归
主动学习
熵
CHOLESKY分解
Gaussian fields(GF)
semi-supervised regression
active learning
entropy
Cholesky decomposition