期刊文献+

利用高斯域的半监督回归和主动学习

Semi-Supervised Regression and Active Learning with GF
下载PDF
导出
摘要 介绍一种定义近邻图上的高斯域(GF)及用于降维和分类的GF的相关知识,提出一种用于半监督回归的高斯域,能自动设置模型参数和近邻数,利用监督和无监督数据进行熵值查询选择从而进行主动学习。实验将其与半监督学习法进行比较并验证了GF的有效性。 A Gaussian Fields(GF) on nearest neighbor graph is defined by using a non-parametric technique. On the basis of it, a MAP criterion which can automatically set model parameter and numbers of nearest-neighbor k is proposed and entropy maximization query selection method for active learning by using supervised and unsupervised information is specified. Experimental results demonstrate effectiveness of GF compared with semi-active learning method.
作者 崔鹏 张汝波
出处 《计算机工程》 CAS CSCD 北大核心 2009年第15期187-189,共3页 Computer Engineering
关键词 高斯域 半监督回归 主动学习 CHOLESKY分解 Gaussian fields(GF) semi-supervised regression active learning entropy Cholesky decomposition
  • 相关文献

参考文献4

  • 1Belkin M,Niyogi P.Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J].Neural Computer,2003,15(6):1373-1396.
  • 2Tenenbaum J B,de Silva V,Langford J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,(290):2319-2323.
  • 3Zhu Xiaojun,Lafferty J,Ghahramani Z.Semi-supervised I.gaming Using Gaussian Fields and Harmonic Functions[C]//Proceedings of the International Conference on Machine Learning.California,USA:AAAI Press,2003.
  • 4Demsar J.Statistical Comparisons of Classifiers over Multiple Data Sets[J].Journal of Machine Learning Research,2006,7(1):532-543.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部