期刊文献+

应用非线性Galerkin方法求解微梁的动态响应 被引量:1

DYNAMICAL RESPONSES OF MICROBEAMS USING NONLINEAR GALERKIN METHOD
下载PDF
导出
摘要 分析在电场力驱动下微共振器的非线性动力学特性.取前3阶模态,利用非线性Galerkin方法得到单自由度的降阶模型.用多尺度法计算降阶模型的动态响应,并得出了稳态响应的幅频特性曲线,与利用传统Galerkin方法直接取1阶模态所得的结果比较.以数值积分法求解3自由度模型得到的微共振器动力学响应为参考标准,验证了非线性Galerkin方法与传统Galerkin方法相比具有较高的精度. The nonlinear dynamic behaviour of a micro-resonator driven by electric force was investigated. The first three modes were used to get a model with single-degree-of-freedom in terms of the nonlinear Galerkin method. The multiple scales method was employed to obtain the dynamic responses of the reduced order model. The amplitude-frequency curve of stationary responses was depicted out and used to compare with the results obtained by the traditional Galerkin method where only the first mode is considered. Taking the dynamic responses obtained numerically from linear Galerkin method the has model with three-degrees-of-freedom as a reference, it can be concluded that the non- higher accuracy in comparison with the traditional Galerkin method
出处 《动力学与控制学报》 2009年第3期205-211,共7页 Journal of Dynamics and Control
基金 国家自然科学基金(10772056) 哈尔滨市科技创新人才研究专项资金(2007RFLXG009)资助项目~~
关键词 MEMS 微梁 惯性流形 非线性GALERKIN方法 MEMS, micro-beam, inertial manifolds, nonlinear Galerkin method
  • 相关文献

参考文献16

  • 1Varadan V K, Vinoy K J, Jose K A. RF MEMS and their applications. Wiley, New York. 2003.
  • 2Younis M I, Abdel-Rahman E M, Nayfeh A H. Static and dynamic behavior of an electrically excited resonant microbeam. Proceedings of the 43rd AIAA, Structural Dynamics, and Materials Conference, USA, 2002:22 - 25.
  • 3Abdel-Rahman E M, Younis M I, Nayfeh A H. Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering,2002, (12) : 759 -766.
  • 4Tilmans H A C, Legtenberg R. Electrostatically driven vacuum-encapsulated polysilicon resonators. Part Ⅱ. Theory and Performance. Sensors and Actuators, 1994, 45 ( 11 ) :67- 84.
  • 5Younis M I, Nayfeh A H. A study of the nonlinear response of a resonant mierobeam to an electric actuation. Nonlinear Dynamics, 2003, 31 ( 1 ) : 91 - 117.
  • 6Abdel-Rahman E M, Nayfeh A H, Younis M I. Dynamics of an electrically actuated resonant microsensor. Proceedings of the International Conference of MEMS, NANO and Smart Systems. 2003 : 188 - 196.
  • 7Nayfeh A H, Balachandran B. Applied Nonlinear Dynamics. John Wiley. 1995.
  • 8Nayfeh A H, Younis M I, Abdel-Rahman E M. Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 2007, (48) :153 - 163.
  • 9Nayfeh A H, Younis M I. Dynamics of MEMS resonators under super-harmonic and subharmonic excitations. Journal of Micromechanics and Micro-engineering, 2005, ( 15 ) : 1840 - 1847.
  • 10Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Springer, 1988.

二级参考文献12

  • 1[5]Beerschwinger U,et al.Coupled electrostatic and mechanical FEA of a micrometer.J Microelectromechanical Systems,1994,3 (4):162~ 171
  • 2[6]Aluru NR,White J.An efficient numerical technical for electromechanical simulation of complicated microelectromechanical structures.Sensors and Actuators A,1997,58(1):1~11
  • 3[7]Kaltenbacher M,et al.A finite-element/boundaryelement method for the simulation of coupled electrostatic-mechanical systems.J Phys,1997,7:1975~1982
  • 4[8]Shi F,et al.Dynamic analysis of micro-electromechanical systems.Inter J Numer Methods Eng,1996,39:4119~4139
  • 5[9]Mukherjee T,et al.Emerging simulation approaches for micromachined devices.Transactions on Computer-aided Design of Integrated Circuits and Systems,2000,19(12):1572~ 1589
  • 6[13]Aluru NR,White J.A multilevel Newton method for mixed-energy domain simulation of MEMS.J Microelectromechanical Systems,1999,8 (3):299 ~ 307
  • 7[14]Affour B,et al.Efficient Reduced Order Modeling for System Simulation of Micro Mechanical Systems(MEMS) from FEM Models.Proc SPIE,2000,4019:50~54
  • 8[19]Hung ES,Senturia SD.Generating efficient dynamical models for microelectromechanical systems from a few finite element simulation runs.J Microelectromechanical Systems,1999,8(3):280~289
  • 9[20]Gabbay LD.Computer-aided macromodeling for MEMS[Doctor thesis].Cambridge:Massachusetts Inst Technol,1998
  • 10[21]Lin WZ,et al.A model reduction method for the dynamic analysis of microelectromechanical systems.Int J Nonlinear Science and Numerical Simulation,2001,2 (2):89~ 100

共引文献3

同被引文献13

  • 1赵跃宇,李永鼎,王连华,康厚军.悬索的超谐波共振与1:3内共振分析[J].动力学与控制学报,2007,5(2):112-117. 被引量:7
  • 2Cassidy R L, Fan S K, Macdonald R S, et al. Serpentine- extended life accessory drive. SAE International, 1979: 790699.
  • 3Abrate S. Vibrations of belts and belt drives. Mechanism and Machine Theory, 1992,27 (3) :645 - 659.
  • 4Zhu F, Parker R G. Non-linear dynamics of a one-way clutch in belt-pulley systems. Journal of Sound and Vibra- tion, 2005,279 ( 1 - 2) :285 - 308.
  • 5Zhu F, Parker R G. Perturbation analysis of a clearance- type nonlinear system. Journal of Sound and Vibration, 2006,292 (3 - 5 ) : 969 - 979.
  • 6Mockensturm E M, Balaji R. Piece-wise linear dynamic systems with one-way clutches. ASME Journal of Vibration and Acoustics, 2005,127 (5) :475 - 482.
  • 7Cheon G J. Nonlinear behavior analysis of spur gear pairs with a one-way clutch. Journal of Sound and Vibration, 2007,304(3 -5) :18 -30.
  • 8Ding H, Zu J W. Periodic and chaotic responses of an axi- ally accelerating viscolastic beam under two-frequency exci- tations. International Journal of Applied Mechanics, 2013,5 (2) :1350019.
  • 9Ding H, Zu J W. Effect of one-way clutch on the nonlin- ear vibration of belt-drive systems with a continuous belt model. Journal of Sound and Vibration, 2013,332(24) : 6472-6487.
  • 10张少飞,上官文斌,曾祥坤.具有单向离合器的多楔带附件驱动系统旋转振动建模及参数优化设计[J].振动与冲击,2012,31(13):163-168. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部