期刊文献+

分数微积分理论在非线性车辆悬架滑模控制中的应用 被引量:13

APPLICATION OF FRACTIONAL CALCULUS THEORY SLIDING MODE CONTROL FOR VEHICLE SUSPENSION SYSTEMS WITH NONLINEARITIES
下载PDF
导出
摘要 基于分数微积分理论,提出分数阶"天棚"阻尼控制概念,并以它控制的悬架为参考模型,提出一个控制效果理想、鲁棒性好的悬架滑模控制的新策略,并应用于非线性悬架的动力学控制中.文中给出了一种精度较高,收敛稳定的分数阶系统的数值算法,最后对非线性悬架的滑模主动控制进行数值仿真,验证了新控制策略优良的控制效果. The concept of fractional order skyhook damping control was presented based on fractional calculus theory. Taking a suspension model controlled by the new skyhook damping as the reference model, a new excellent sliding mode control strategy for suspension systems was proposed and applied in the control of a nonlinear suspension. A kind of numerical scheme for fractional order system with high accuracy and stability was also given. The new sliding mode control for an active suspension with nonlinearities was investigated through numerical simulation. The computational results verify the good control efficacy of the new strategy.
出处 《动力学与控制学报》 2009年第3期258-263,共6页 Journal of Dynamics and Control
基金 国家自然科学基金项目(5057504) 江苏省高校自然科学基金项目(08KJD130002)资助~~
关键词 分数微积分 天棚阻尼 滑模控制 非线性悬架 精细积分 fractional calculus, skyhook damping, sliding mode control, nonlinear suspension, precise integration
  • 相关文献

参考文献11

  • 1Podlubny I. Fractional differential equations. Academic Press, San Diego, 1999.
  • 2D Karnopp, M J Crosby, R A Harwood. Vibration control using semi-active force generators. Transactions of ASME, 1974 : 619 - 626.
  • 3C Kim, P I Ro. A sliding mode controller for vehicle active suspension systems with Nonlinearities. Proceedings of the Institution of Mechanical Engineers , 1998,212, D : 79 - 92.
  • 4Ramiro S Barbosa, J A Tenreiro Machado, Isabel M Ferreira. A fractional calculus perspective of PID tuning. Proceedings of DETC. 03 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago, Illinois, USA, September, 2003:2 - 6.
  • 5Podlubny I. Fractional-order systems and PI^λD^μ controllers. IEEE Trans. on Auto. Control,1999,44 : 208 -213.
  • 6王昊,胡海岩.基于磁流变阻尼器整车半主动悬架的开关控制[J].动力学与控制学报,2004,2(4):71-76. 被引量:10
  • 7Ning Chen, Yongpeng Tai. Application of fractional order skyhook damping control on semi-active suspension. International Pre-Olympic Workshop on Modeling and Simulation, Nanjin, China ,2008.
  • 8裘春航,吕和祥.非线性动力学方程的一种级数解[J].计算力学学报,2001,18(1):1-7. 被引量:11
  • 9钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 10宋刚,林家浩,吴志刚.考虑参数不确定性的主动悬架鲁棒H_2/H_∞混合控制[J].动力学与控制学报,2008,6(2):156-164. 被引量:9

二级参考文献23

  • 1钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 2C.F.塞蒙斯.微分方程[M].北京人民教育出版社,1981..
  • 3刘少军.基于高速开关阀技术的液压主动隔振系统及控制策略研究:学位论文[M].武汉:中南工业大学,1997..
  • 4张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动.测试与诊断,1997,17(1):7-15. 被引量:43
  • 5[1]Williams RA.Automotive active suspensions Part 1:basic principles.ASME Proc Instn Engrs,1997,211 (Part D):415~426
  • 6[2]Williams PA.Automotive active suspensions Part 2:practical considerations.ASME Proc Instn Engrs,1997,211(Part D):427~444
  • 7[3]Hrovat D.Survey of advanced suspension developments and related optimal control applications.Automatica,33 (10):1781~ 1817
  • 8[4]Ikenaga S,Lewis FL,Campos J,Davis L.Active suspension control of ground vehicle based on a full-vehicle model.Proceedings of the American Control Conference Chicago,Illinois June,2000:4019~ 4024
  • 9[5]Spencer BF,Dyke SJ,Sain MK,et al.Phenomenological model of a magnetorheological damper.Journal of Engineering Mechanics ASME,1997,123(3):230~238
  • 10[6]Jolly MR,Vender JW,Carlson JD.Properties and application of commercial Magnetorheological fluids.SPIE 5th Annual Int.Symposium on Smart Structures and Materials,San Diego,CA March 15,1998

共引文献537

同被引文献162

引证文献13

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部