期刊文献+

电纺丝方法制备卵磷脂改性聚乳酸血管组织工程支架材料 被引量:5

Electrospun PLLA scaffold of blood tissue engineering modified by lecithin
下载PDF
导出
摘要 目的为了改善聚乳酸材料的生物相容性和韧性,在PLLA中混合卵磷脂材料进行电纺丝,以制备血管组织工程支架材料。方法使用共混方法制备聚乳酸/卵磷脂材料,利用红外拉曼光谱仪观察其共混性能,使用电纺丝的方法制备血管组织工程支架,并采用滴液法测定接触角和液体渗透法测定孔隙率,最后使用万能试验机考察卵磷脂浓度对共混材料拉伸性能的影响。结果加入卵磷脂对电纺丝纤维的表面形貌没有明显的影响。两种材料经过物理混合后,材料保持了卵磷脂的生物活性。随着卵磷脂含量的增加,共混材料的接触角逐渐降低,由纯PLLA无纺布的75.2°。降至10%浓度卵磷脂的32.5°,证明材料的亲水性逐渐增加。而电纺丝支架的孔隙率为74.4%到81.8%,适合应用于生物医学、组织工程等领域。最后,随着共混材料中卵磷脂浓度的增加,拉伸强度逐渐降低,而断裂伸长率有所增加。结论卵磷脂可以增加聚乳酸材料的亲水性和整体力学强度,使之更加适用于血管组织工程领域。 Objective To improve the biocompatibility and toughness of PLLA material, the lecithin was mixed into it to produce the scaffold of blood tissue engineering. Methods The infrared spectrum was achieved to observe the blending properties, the contact angles of the electrospun fabrics with lecithin of different concentrations were measured by dropping method and porosities of them were calculated by liquid penetrant inspection while the tensile property was tested. Results The blend fabrics of PLLA and lecithin had the similar surface topography with pure PLLA fiber. The addition of lecithin into PLLA led to the reduction of the tensile strength and contact angle but the increasement of ductility. Conclusion the lecithin processes the ability to adjust the hydrophilic and tensile properties of PLLA and makes it much more suitable for the application of blood vessel tissue engineering.
出处 《生物骨科材料与临床研究》 CAS 2009年第4期42-45,共4页 Orthopaedic Biomechanics Materials and Clinical Study
基金 国家自然科学基金资助(基金编号:50830102)
关键词 血管组织工程支架 聚乳酸 卵磷脂 Scaffold of blood vessel tissue engineering PLLA Lecithin
  • 相关文献

参考文献2

二级参考文献21

  • 1胡平,张璐,方壮熙,杨东芝,齐宏旭.电纺丝及其在生物医用材料中的应用[J].纺织科学研究,2004,15(2):26-32. 被引量:24
  • 2方壮熙,张璐,韩涛,胡平.PHBV电纺纤维结构与形态的研究[J].高分子学报,2004,14(4):500-505. 被引量:30
  • 3王新威,胡祖明,潘婉莲,刘兆峰.聚丙烯腈纳米微纤的制备[J].合成纤维,2004,33(5):16-18. 被引量:1
  • 4张玉军,黄玉东,陆春,金镇镐,王磊.EVOH超细无纺布电纺丝工艺及无纺布显微结构的表征[J].材料科学与工艺,2004,12(3):287-290. 被引量:14
  • 5Xu C Y, Inai R, Kotaki M, et al. Aligned biodegradable nanofibers structure: a potential scaffold for vessel engineering [ J ].Biomaterials. 2004,25 ( 5 ) : 877-886.
  • 6Kenawy E, Layman J M, Watkins J R, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers [ J ]. Biomaterials. 2003,24(6) :907 -913.
  • 7Demir M M, Yilgor I, Yilgor E, et al. Electrospining of polyurethane fibers [J]. Polymer. 2002,43( 11 ) :3303-3309.
  • 8Deitzel J M, Klelnmmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly( ethylene oxide) fibers [ J ]. Polymer. 2001,42(19) :8 163 -8 170.
  • 9Ding B, Kimura E, Sato T, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multijet electrospinning [ J ].Polymer. 2004,45(6) :1 895 - 1 902.
  • 10Kessick R, Fenn J, Tepper G. The use of AC potentials in electrosprying and electrospinning processes [J]. Polymer. 2004, 45(9) :2981-2984.

共引文献25

同被引文献110

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部