期刊文献+

新型骨组织工程支架材料生物相容性的体内研究 被引量:3

Biocompatibility of new bone tissue engineering scaffolds in vivo
下载PDF
导出
摘要 目的通过比较2种新型骨组织工程支架材料即聚消旋乳酸/聚乳酸-聚乙二醇-聚乳酸/磷酸三钙(A)、聚消旋乳酸/聚乳酸-聚乙二醇-聚乳酸(B)与对照组聚消旋乳酸(C)修复兔下颌骨缺损的效果,探讨新型可吸收性生物支架材料体内埋植的生物相容性。方法24只成年新西兰大白兔按取材时间随机分为4组。双侧下颌骨下缘形成15mm×6mm全层骨质缺损,每一缺损作为一个实验单位。每组内按完全随机化设计植入实验材料和对照材料。术后2、4、8、12周取材行大体标本、X线、组织学观察及计算机图像分析。结果复合支架材料A、B与聚消旋乳酸相比,复合支架B生物相容性好,同期成骨量最大;复合支架A出现明显的异物肉芽肿反应。结论新型复合支架材料B生物相容性好,效果优于聚消旋乳酸,有可能成为一种较理想的支架材料。复合支架A不适宜作为骨组织工程生物支架材料。 Objective To investigate the biocompatibility of new bone tissue engineering scaffolds, A: D, L-polylactic acid(PDLLA)/polylactie acid-polyethylene glycol-polylactic acid-polylactic acid(PLA-PEG-PLA)/Triealcium phosphate and B: PDLLA/PLA-PEG-PLA in vivo, compared with PDLLA in repair of a rabbit mandibular body defect. Methods 24 New Zealand adult rabbits were divided into 4 groups randomly. 15 mm×6 mm defects were made surgically in the bilateral mandibular bodies and each hemi-mandible was assigned as an experimental unit. The defects were randomly repaired with scaffold materials in each group. Specimens obtained were evaluated with general observation, X-ray, histomorphology and computerized graphical analysis at 2, 4 , 8, 12 weeks after surgery. Results Compared with PDLLA, the new scaffold materials B showed biocompatibility. At the same time the quantity of new bone produced was much more than that in control group (P〈0.05). The new scaffold materials A showed the clear chronic granulomatous inflammation. Conclusion New scaffold material B had sound bioeompatibility. It was much better than PDLLA. So it may be an ideal bone tissue engineering scaffold material. A is not adapted to be used as scaffold material.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2009年第4期447-450,共4页 West China Journal of Stomatology
基金 广东省自然科学基金资助项目(990621)
关键词 骨组织工程 支架材料 下颌骨缺损 bone tissue engineering scaffold material mandibular defect
  • 相关文献

参考文献7

二级参考文献37

共引文献56

同被引文献30

  • 1Bagis B, Ayaz EA, Turgut S, et al. Gender difference in prevalence of signs and symptoms of temporomandibular joint disorders: a retrospective study on 243 consecutive patients[J]. Int J Med Sci, 2012, 9(7):539-544.
  • 2Coelho NM, Gonzfilez-Garcla C, Planell JA, et al. Different assembly of type IV collagen on hydrophilic and hydro- phobic substrata alters endothelial cells interaction[J]. Eur Cell Mater, 2010, 19:262-272.
  • 3Zhou LB, Shang HT, He LS, et al. Accurate reconstruction of discontinuous mandible using a reverse engineering/ computer-aided design/rapid prototyping technique: a pre- liminary clinical study[J]. J Oral Maxillofac Surg, 2010,68(9):2115-2121.
  • 4Da H, Jia S J, Meng GL, et al. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering[J]. PLoS ONE, 2013, 8(1):e54838.
  • 5Reshad M, Cascione D, Aalam AA. Fabrication of the man- dibular implant-supported fixed restoration using CAD/CAM technology: a clinical report[J]. J Prosthet Dent, 2009, 102 (5):271-278.
  • 6Hui JH, Ren X, Afizah MH, et al. Oligo[poly(ethylene gly- col)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects[J]. Clin Orthop Relat Res, 2013, 471(4):1174-1185.
  • 7Solchaga LA, Yoo JU, Lundberg M, et al. Hyaluronan-based polymers in the treatment of osteochondral defects[J]. J Or- thop Res, 2000, 18(5):773-780.
  • 8Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimen- sional osteochondral composite scaffold for articular carti- lage repair[J]. Biomaterials, 2002, 23(24):4739-4751.
  • 9Jin L, Wan Y, Shimer AL, et al. Intervertebral disk-like biphasic scaffold-demineralized bone matrix cylinder and poly(polycaprolactone triol malate)-for interbody spine fusion[J]. J Tissue Eng, 2012, 3(1):2041731412454420.
  • 10Frenkel SR, Bradica G, Brekke JH, et al. Regeneration of articular cartilage----evaluation of osteochondral defect repair in the rabbit using multiphasic implants[J]. Osteoarthr Cartil, 2005, 13(9):798-807.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部