期刊文献+

基于遗传算法的协同优化方法 被引量:5

A New Collaborative Optimization Based on Genetic Algorithm
下载PDF
导出
摘要 针对协同优化的系统级优化可行域可能不存在的问题,采用遗传算法,并借鉴逐步增强约束强度的思想,提出了基于遗传算法的协同优化算法.该算法利用各子学科返回的优化值,计算种群中个体的不可行度,根据不可行度和阈值来判定该个体是否为可行解.提出利用循环迭代次数调整阈值的方法,保证了系统级优化向一致性等式约束不满足度减小的方向进行,达到了有效增强子学科间一致性的目的.最后,利用减速器典型算例对该方法进行了验证,结果表明该方法的优化性能良好. In view of that the feasible region is possibly inexistent during the collaborative optimization at system level, the genetic algorithm (GA) is introduced in combination with strengthening the constraint conditions step by step to develop a new GA-based collaborative optimization algorithm. In this algorithm the individual in feasibility in population is computed with the optimal values resulting from subsystems, then whether the solution to an individual is feasible depends on the infeasibility and its threshold. A method to adjust the threshold is proposed via cyclic iteration steps to ensure that the optimization at system level will go towards decreasing the unsatisfiability of constraint on consistency equality, thus achieving the goal to enhance the interdisciplinary consistency. Taking the design of a speed reducer as example, the performance of the optimization algorithm is proved excellent.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第8期1074-1077,共4页 Journal of Northeastern University(Natural Science)
基金 解放军总装备部武器装备预研基金资助项目(9140A18010106LN0101) 辽宁省博士启动基金资助项目(20071022)
关键词 多学科设计优化 协同优化 遗传算法 不可行度 学科间一致性 multidisciplinary design optimization collaborative optimization genetic algorithm infeasibility interdisciplinary consistency
  • 相关文献

参考文献8

  • 1Lin J G. Analysis and enhancement of collaborative optimization for multidisciplinary design[J]. AIAA Journal, 2004,42(2) :348 - 360.
  • 2Alexandrov N, Lewis R M. Analytical computational aspects of collaborative optimization for multidisciplinary design [ J ]. AIAA Journal, 2002,40(2):301 - 309.
  • 3Sobieski L P, Kroo L. Collaborative optimization using response surface estimation[R]. AIAA- 98 - 0915. Reno: Aerospace Sciences Meeting and Exhibit, 1998.
  • 4Jang B S, Yang Y S, Jung H S, et al. Managing approximation models in collaborative optimization[J]. Struct Multidisc Optim, 2005,30 : 11 - 26.
  • 5Cormier T A, Scott A, Ledsinger L A, et al. Comparison of collaborative optimization to conventional design techniques for conceptual RLV[C]//Proceedings of 8th AIAA/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach: Aerospace Sciences Meeting and Exhibit, 2000:1 - 10.
  • 6王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 7Srinivas K. Evaluation of methods for multidisciplinary design optimization( MDO ) [ R ]. NASA/CR - 1998 - 208716. Washington, D C: National Aeronautics and Space Administration, 1998.
  • 8Azam S, Li W C. Multi-level design optimization using global monotonicity analysis[J]. ASME Journal of Mechanisms and Automation in Design, 1989,111(2) :259 - 263.

二级参考文献11

  • 1MU Shengjing, SU Hongye, WANG Yuexuan, et al. An efficient evolutionary multi-objective optimization algorithm [A]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC2003) [C]. Canberra: IEEE Press, 2003,914 - 920.
  • 2Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proceedings of the First International Conference on Genetic Algorithms [C].Lawrence Erlbaum: IEEE Press, 1985, 93 - 100.
  • 3Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multiohjective Optimization [R]. Sheffield:Department of Automatic Control and Systems Engineering,University of Sheffield, 1994.
  • 4Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221-248.
  • 5Veldhuizen D A V. Multiobjective evolutionary Algorithms:Classification, Analyses, and New Innovations [D].Dayton: Air Force Institute of Technology Air University,1999.
  • 6Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 7Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization [R]. KanGAL report, 200002, Kanpur : Indian Institute Technology, 2002.
  • 8Michalewicz Z, Dasgupta D, Le R, et al. Evolutionary algorithm for constrained engineering problems [J].Computers & Industrial Engineering, 1996, 30(4) :861 - 87O.
  • 9Deb K. An efficient constraint handling method for genetic algorithm [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186:311-338.
  • 10MU Shengjing, SU Hongye, MAO Weijie, et al. A new genetic algorithm to handle the constrained optimization problem [A]. 41st IEEE Conference of Decision and Control [C]. Las Vegas: IEEE Control Systems Society, 2002.739 - 740.

共引文献54

同被引文献43

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部