期刊文献+

运动车辆阴影的快速检测算法

A Fast Shadow Detection Algorithm for Moving Vehicles
下载PDF
导出
摘要 针对室外交通监控系统遇到的环境光性质变化等问题,提出一种运动车辆阴影快速检测算法.算法首先根据局部阴影模型,利用亮度比判据进行阴影初检测,然后根据动态边缘投影估计得到的车体位置剔除伪阴影,最后根据亮度比统计直方图对亮度比判据阈值进行自适应更新.为验证算法的有效性,分别在不同监控场景、不同日照情况下,对车辆阴影检测进行了实验.实验结果表明:该算法检测速度快,精度高,不受光源性质变化造成的颜色漂移现象的影响,能准确剔除阴影,适合室外环境下的车辆动态检测. Investigates the effect of change in ambient light on the outdoor traffic surveillance system, then a fast shadow detection algorithm is proposed for moving vehicles. According to the local shading model, in the algorithm the brightness ratios are used as criteria to detect the shadows preliminarily so as to get rid of the pseudo-shadow pixels by dynamic edge projection to obtain the approximate locations of relevant vehicles and, as a result, the thresholds of the criteria can be updated adaptively in compliance with the statistical histogram of brightness ratios. To verify the effectiveness of the proposed algorithm, some tests were clone in situ with different scenes and sunlight conditions. The results showed that the proposed algorithm is fast in detection and accurate in ridding shadow without color drift due to change in ambient light. So, it is suitable for the outdoor vehicle detection system.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第8期1087-1090,1110,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60874103)
关键词 交通监控 车辆 亮度比 边缘特征 阴影检测 traffic surveillance vehicle brightness ratio edge feature shadow detection
  • 相关文献

参考文献10

  • 1Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(10) : 1337 - 1342.
  • 2Withagen P J, Groen F C A, Schutte K. Shadow detection using a physical basis[Cl//Proceedings of the Conference on International Instrumentation and Measurement Technology. Piscataway:IEEE, 2008:119 124.
  • 3Zhong Q, Zhang J P. Method of removing moving shadow based on texture[ C] //Proceedings of the Chinese Control and Decision Conference. Piscataway: IEEE, 2008 : 2254 - 2256.
  • 4Zhang W, Fang X Z, Yang X K, et al. Moving cast shadows detection using ratio edge [J ]. IEEE Transactions on Multimedia, 2007,9(6) : 1202 - 1214.
  • 5Joshi A J, Papanikolopoulos N. Leaming of moving cast shadows for dynamic environments [ C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2008:987 992.
  • 6Yan Z J, Zhang H, Meng H D, et al. Cast vehicle shadow segmentation based on contour analysis[ C]//IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2007:866 - 871.
  • 7Forsyth D A, Ponce J. Computer vision: a modem approach [ M]. Englewood Cliffs: Prentice Hall, 2002 : 54 - 59.
  • 8Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 1999 : 246 - 252.
  • 9Donoho D L. De-noising by soft-thresholding [J ]. IEEE Transactions on Information Theory, 1995,41 (3) : 613 627.
  • 10Computer Vision and Robotics Research Laboratory. Highway[EB/OL]. La Jolla: University of California at San Diego, 2001[2008 - 08 - 13]. http://cvrr.ucsd. edu/ aton/shadow/data.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部