期刊文献+

纳米氧化锆填充UHMWPE人工髋臼的生物磨损行为研究 被引量:11

Biotribological Behavior of Ultra High Molecular Weight Polyethylene Composites Filled with Nano-ZrO_2
下载PDF
导出
摘要 采用热压工艺制备了超高分子量聚乙烯(UHMWPE)/纳米氧化锆(ZrO2)髋臼复合材料,利用UMT试验机测试复合材料的硬度和剪切冲压性能,利用人工髋关节模拟磨损试验机考察了复合材料在小牛关节液润滑条件下的摩擦磨损性能.结果表明,填充ZrO2提高UHMWPE复合材料的表面硬度、断裂载荷和断裂功,降低其磨损率.ZrO2/UHMWPE复合材料的磨粒尺寸随着ZrO2含量的增加而升高.UHMWPE复合材料耐磨性能与其大变形行为相关,复合材料的磨损率与大变形行为参数断裂载荷和断裂功呈反比线性关系. The artificial joint material of UHMWPE composite filled with nano -ZrO2 in different contests was prepared with a pressing formation method. Hardness and shear punch behavior of ZrO2/UHMWPE composites were measured with UMT tribo - tester. Biotribological behavior of the composites was investigated with a hip joint simulator under lubrication of calf bovine synovial. The experimental results indicated that nano - ZrO2 filler increased the hardness, frature load and fracture work of composites, and reduced the wear rate of the composite. The sizes of the wear particles become larger as the ZrO2 contents increased. The wear resistance of UHMWPE composites was influenced by their severe - deformation behavior. A negative linear function was found between the wear rate and fracture load, fracture work.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2009年第4期324-328,共5页 Tribology
基金 国家自然科学基金重点项目资助(50535050) 国家重点基础研究发展规划(973)资助项目(2007CB607605) 教育部新世纪优秀人才支持计划资助项目(NCET-06-0479) 中国矿业大学校基金资助项目(2007A049)
关键词 纳米氧化锆 超高分子量聚乙烯 生物摩擦学 剪切冲压 nano- ZrO2, UHMWPE, biotribology, shear punch
  • 相关文献

参考文献17

  • 1Wang D C, Sun C, Stark J H. Dumbleton, Wear mechanisms of UHMWPE in total joint replacements [J]. Wear, 1995, 181 -183 : 241 -249.
  • 2J Fisher, D Downson, H Hamdzah, et al. Effect of sliding velocity on the friction and wear of UHMWPE for use in total artificial joints[J]. Wear,1994, 175:219-255.
  • 3D Xiong. S, Ge, Friction and wear properties of UHMWPE/ A1203 ceramic under different lubricating conditions [ J ]. Wear, 2001,250:242-245.
  • 4OHTA M, HYON S H, OKA. M, et al. Wear resistance of lightly cross - linked ultrahigh - molecular - weight polyethylene crystallized from the melt under uniaxial compression [ J ]. Wear, 1999, 225-229(1): 312-318.
  • 5LEE E H, LEWIS M B, BLAU P J, et al. Improved surface properties of polymer materials by multiple ion beam treatment [ J]. Journal of Biomedical Materials Research, 1991, 6 ( 3 ) : 610 -628.
  • 6Ge S R, Wang Q L, ZHANG D K, et al. Friction and wear behavior of nitrogen ion implanted UHMWPE against ZrO2 ceramic [J]. Wear, 2003, 255(7- 12):1 069-1 075.
  • 7SZE J Y, TAY B K. Carbon ion implantation of ultra - high molecular weight polyethylene using filtered cathodic vacuum arc with substrate pulse biasing [J]. Surface and Coatings Technology, 2006, 200( 12 13) : 4 104 -4 110.
  • 8X L Xie, C Y Tang, Kathy Y Y, et al. Wear performance of ultrahigh molecular weight polyethylene/quartz composites [ J ]. Biomaterials, 2003, 24:1 889- 1 896.
  • 9Roy S, Pal S. Characterization of silane coated hollow sphere alumina- reinforced ultra high molecular weight polyethylene composite as a possible bone substitute material [ J]. Bulletin of Materials Science , 2002, 25 (7) : 609 - 612.
  • 10A Wang, D C Sun, C Stark, et al. Wear mechanisms of UHMWPE in total joint replacements[ J], Wear, 1995 ( 181 - 183) : 241 -249.

二级参考文献16

  • 1Dowson D. A Comparative study of the performance of metallic and ceramic femoral head components intotal replacement hip joints[J].Wear, 1995,190:171-183.
  • 2Barrett T S, Stachowiak G E, Batchelor A W. Effect of roughness and sliding speed on the wear and friction of ultrahigh molecular weight polyethylene[J]. Wear, 1992, 153:331-350.
  • 3Ge S R, Wang Q L, Zhang D K, et al. Friction and wear behavior of nitrogen ion implanted UHMWPE against ZrO2 ceramicoutin.P[J]. Wear, 2003, 255:1 069-1 075.
  • 4Dong H, Shi W, Bell T. Potential of improving tribological performance of UHMWPE by engineering the Ti6Al4V counterfaces[J]. Wear, 1999, 225-229:146-153.
  • 5Wang A, Lin R, Stark C, et al. Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements[J]. Wear, 1999, 225-229:724-727.
  • 6Cooper J R, Dowson D, Fisher J. Birefringent studies of polyethylene wear specimens and acetabular cups[J]. Wear, 1991151:391-402.
  • 7Saikko V, Calonius O. Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators[J]. Journal of Biomechanics,2002,35(4):455-464.
  • 8Dowson D, Wallbridge N C. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints I: Charnley prostheses with polytetrafluoroethylene acetabular cups[J].Wear, 1985,104:203-215.
  • 9Saikko V. Wear of polyethylene acetabular cups against zirconia femoral heads studied with a hip joint simulator[J]. Wear, 1994, 176:207-212.
  • 10Atkinson J R, Dowson D, Isaac J H, et al. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints III: The measurement of internal volume changes in explanted charnley sockets after 2-16 years in VIVO and the determination of wear factors[J]. Wear, 1985,104 :225-244.

共引文献7

同被引文献204

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部