期刊文献+

保细节自适应超分辨率融合算法 被引量:1

Adaptive Super-Resolution Fusion Algorithm with Detail Preserving
下载PDF
导出
摘要 超分辨率融合是把配准好的低分辨率图像信息进行综合,形成高分辨率栅格上的均匀采样为了改善图像超分辨率融合效果,对鲁棒超分辨率融合算法进行改进.分析图像局部模式,给出角点和连接点的识别方法,进而设计了保细节自适应适用度函数,提出了保细节自适应超分辨率融合算法.实验结果表明,算法不仅对配准误差具有鲁棒性,而且能很好地保存图像的边缘和细节特征,提高了融合图像的质量. Super-resolution fusion is to synthesize the information of low resolution images registrated and to construct the uniformed samples of high resolution grid. To improve the effect of super-resolution image fusion,an improved approach was proposed on the basis of robust super-resolution fusion. Through the analysis of the local mode of image and the way to recognize the comer and junction,the adaptive applicability function with detail preserving was designed and the adaptive super-resolution fusion algorithm was proposed. Experimental results show that the proposed adaptive super-resolution fusion algorithm with detail preserving is robust to registration error and can keep the features of edge and the detail of image well ,which improves the equality of fused image.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2009年第8期727-732,共6页 Journal of Tianjin University(Science and Technology)
基金 天津市自然科学基金资助项目(07JCYBJC13800) 天津市自然科学基金资助项目(07JCZDJC05800)
关键词 超分辨率融合 保细节 自适应 归一化卷积(NC) super-resolution fusion detail preserving adaptive normalized convolution (NC)
  • 相关文献

参考文献18

  • 1Park S C,Park M K,Kang M G.Super-resolution image reconstruction:A technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 2Borman S,Stevenson R L.Spatial Resolution Enhancement of Low-Resolution Image Sequences:A Comprehensive Review with Directions for Future Research[R].Laboratory for Image and Signal Analysis,University of Notre Dame,1998.
  • 3Zhao W,Sawhney H,Hansen M,et al.Super-fusion:A super-resolution method based on fusion[C]// Proceedings of the 16th International Conference on Pattern Recognition.Queébec,Canada,2002:269-272.
  • 4Elad M,Hel-Or Y.A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J].IEEE Transactions on Image Processing,2001,10(8):1187-1193.
  • 5Ur H,Gross D.Improved resolution from subpixel shifted pictures[J].Graphical Models and Image Processing,1992,54(2):181-186.
  • 6Keren D,Peleg S,Brada R.Image sequence enhancement using sub-pixel displacement[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Ann Arbor,Michigan,USA,1988,742-746.
  • 7Alam M S,Bognar J G,Hardie R C,et al.Infrared image registration and high resolution reconstruction usingmultiple translationally shifted aliased video frames[J].IEEE Transactions on Instrumentation and Measure-ment,2000,49(5):915-923.
  • 8Nguyen N,Milanfar P.An efficient wavelet-based algorithm for image superresolution[C]// Proceedings of IEEE International Conference on Image Processing.Vancouver,Canada,2000:351-354.
  • 9Lertrattanapanich S,Bose N K.High resolution image formation from low resolution frames using Delaunay triangulation[J].IEEE Transactions on Image Processing,2002,11(12):1427-1441.
  • 10Farsiu S,Robinson M D,Elad M,et al.Fast and robust multiframe super resolution[J].IEEE Transactions on Image Processing,2004,13(10):1327-1344.

二级参考文献4

共引文献18

同被引文献17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部